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Foreword 
About 10 years ago, with Prof. Rajesh Gupta at the University of California at Irvine, we 
embarked on a project for hardware model composition at the highest level of abstraction. At that 
time, due to the increased complexity of hardware designs and increased size due to the 
continuation of Moore’s law, it started becoming extremely hard to design hardware chips in the 
old ways using register transfer level modeling directly. Thus transaction level modeling at 
various levels of accuracy came into existence, and plenty of new models were being made 
available in a new C++ based hardware description language called SystemC. In our project code 
named BALBOA, we created a component composition framework such that existing 
components can reflect their behavioral types at their interfaces through an introspection 
mechanism. Therefore, an integrator of components can choose and combine components to 
achieve functionality but on the way get assurance that the composition will not deadlock or will 
fail to deliver output signals or receive input signals at the right instant, and thereby make 
computational mistakes. After the limited success of BALBOA we embarked on another project 
at Virginia Tech for component composition but this time with meta-modeling rather than 
reflection. Using meta-data about components (including temporal properties as seen at the 
interfaces) we could also provide assurance for composition.  
 
This led us to believe that similar techniques will apply to software composition. However, 
software components are not necessarily active components like hardware components. In a way, 
all hardware components have their own thread of computation. As clocks tick, they sample their 
inputs, compute, store, and produce output, and keep doing this ad infinitum. Since most 
hardware is synchronous, the problem is easier because the click provides a synchronization 
barrier. For globally asynchronous locally synchronous designs, the complication starts, where 
we cannot synchronize the actions of the different components with the help of a single barrier 
signal (clock). In software it is even more complex. First, not all software components are active 
objects. Some only respond to method calls, but do not actively compute. These passive objects 
or components execute their actions in the caller’s thread, and hence are sequentially composed 
in the thread of the callers. So the problem there is to determine that if a number of different 
callers are executing the code in that component, then they do not fail in synchronization at the 
right moments.  
 
However, our interest was more in active components, such that each component has its own 
thread of computation, and it only reacts to inputs and acts on other components by producing 
outputs. In the absence of a clock to synchronize the moments when inputs should be read or 
outputs should be produced, the inputs may not all be read at the same time, and not all outputs 
may be produced at the same time. Even during a single iteration of its loop, it may have 
conditionals that guard when an input is read, and when an output is produced. This gives rise to 
the notion of Polychrony: different inputs and outputs act at different iterations, and thus, if an 
interacting component cannot determine when to expect input from another one, and always 
expects input at times when the sender is not supposed to produce it, it may have problems of 
deadlock, live-lock etc.  
 
If the loop iterations could be synchronized with barrier synchronization, this can be simplified to 
some extent but at the cost of performance. Hence one should try to minimize the 
synchronization requirements so that synchronizations are only used to prevent data races, and 
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non-determinism. This prompted us to propose that we can use the notion of Polychrony and its 
notion of composition to check for these.  
 
The only known Polychrony implementation was from the ESPRESSO project in France. We 
began our own implementation in the form of MRICDF, rather than SIGNAL, in order to have 
more control over the code of tools built, and the methodology. However, we have used the terms 
SIGNAL and MRICDF often interchangeably in this document.  
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Preface 
We have heard anecdotes about the cost overrun of the F-22 due to the failure of integration of 
software components developed and verified by distinct vendors at seven congressional districts. 
We never found any documentary evidence to the truthfulness of this anecdote, but it is quite 
conceivable to any software engineer who has worked on a project that has more than a million 
lines of source code. The decomposition of requirements at the outset of the project and the 
agreement on the interfaces often precede the contracting out of various components to multiple 
vendors. However, the interfaces that are agreed upon by all the parties usually are static 
interfaces. This means that they agree on data types of arguments and results of methods, and 
possibly on sizes of variable width data type etc. The interaction diagram at the UML level 
capture some of the interactions between components, but more often these are not exhaustive, 
and they do not capture all the dynamic behaviors of the components which will be eventually 
integrated. This leads to integration failure, and requires redesign of components or at least their 
interfaces, leading to cost overruns, and time-to-market delays.  
 
The Software Intensive Systems Producibility initiative of the Office of Secretary of Defense 
(OSD) looks for ways to enhance productivity of software designers of safety-critical systems. A 
lot of the work in this area focuses on verification and validation (V&V) because 70% of the 
resources of sizable software projects are spent on V&V efforts. Therefore, our project tries to 
provide a way of carrying out cost-effective V&V for the integration stage. One way to verify 
that the integration works would be to first integrate and subject the integrated system to full V & 
V effort. But due to the scalability problems of verification tools, this becomes quickly infeasible. 
 
So the effort should be on verifying that the integration works without having to re-verify the 
components, and hence only the interactions. The concept of behavioral types comes out of this 
idea. One could provide behavioral types of the interfaces in many ways (e.g. state machine 
models, temporal logics, etc.), but the issue might be that these all require over-synchronized 
integration for these models to compose. We therefore chose the Polychronous model of 
interfaces, and leverage theories that already are known to work in practice. However, we found 
two problems: (i) besides the single source risks, the only Polychrony implementation was not 
indigenous and therefore not always necessarily useful to DoD, and (ii) the theory of Polychrony 
was never tested for solving this problem as it was invented for model driven code synthesis, and 
hence there were gaps in the theory – especially in scaling issues. So we had to work on 
developing our own Polychrony implementation, which we already started one summer at Air 
Force Research Laboratory (AFRL) when the PI was a summer faculty visitor at AFRL with Mr. 
Steve Drager. However, we needed to develop this theory further to accommodate the needs of 
scalable composition checking, as described in the results section.  
 
Overall, this project was a very good learning ground for the advanced model driven software 
engineering theory that European projects have worked on for over two decades and the United 
States academia did not pay a lot of attention to until very recently. The theories and models of 
the French synchronous language community led to tools such as SCADE, which is now a 
certified tool used in avionics software synthesis, albeit only a small percentage of the avionics 
software at Airbus. It is a triumph of model driven software design, synthesis and verification 
research.  
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We therefore not only brought that technology into the DoD knowledge space, we actually 
improved the theory, and we have provided alternative synthesis algorithms. We think that is the 
most important contribution of this project.  
 
The practice of compositional design with behavioral interface types, examined at the end of this 
project, has not moved past prototyping because we need to partner with a DoD software vendor 
to deliver an industry strength software. That is one of the most important failures of this project. 
 
Overall, we think we can build on these results in partnership with a DoD software vendor to 
implement the theory and knowledge we have gained in this project.  



ix 

Acknowledgement 
We acknowledge the support of Mr. Steven Drager from the Air Force Research Laboratory 
throughout the project. Besides funding this project, his group has continuously provided 
feedback and helped us with many different technical and nontechnical issues related to this 
project. We also acknowledge the support of Dr. Michael May from the Office of the Secretary of 
Defense, Office of the Assistant Secretary of Defense for Research and Engineering 
(OASD(R&E)) who has also provided very useful feedback during the semi-annual review 
meetings and his site visit to Virginia Tech. Mr. William McKeever from AFRL also provided 
various feedback and we are grateful for all the generous help and directions provided by all of 
them. 
 
The ESPRESSO research team at the French National Institute of Computer Science and 
Automation (INRIA), particularly Jean-Pierre Talpin, has provided valuable advice and feedback 
on the use of Polychrony and polychronous model of computation. Jens Brandt from the Quartz 
project at the Technical University of Kaiserslautern, Germany also helped in many ways, as the 
theme of this project is also of great interest in Europe.  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
1 

1 Summary 
This section overviews the main topics covered in this project. In order to keep it brief the major 
accomplishments of this project, and some disappointments of the project, are listed but not 
described here. Further details will be provided in the subsequent sections. 

1.1 Major Highlights  
• New Methodology for Compatibility Checking between separately developed components  
• Prime Implicate-based algorithm for behavioral compatibility checking  
• Improvement of the Embedded Code Synthesis (EmCodeSyn) tool to extract behavioral 

types, transform Multi-Rate Instantaneous Channel Connected Data-Flow Actor Model 
(MRICDF) code to Signal  

• C-to-SIGNAL extraction tool implementation to extract behavioral types from C-based 
components  

• Two Case studies (ArduPilot, AutoSar)  
• New Improved algorithms for Prime Implicate Generation  
• Faster Prime Implicate Generation by Filtering and Decomposition  
• Graph based Heuristic for Epoch Calculus with incremental algorithm  

1.2 Disappointments  
• The project lasted only 18 months. It takes about a year to hire and train a postdoctoral 

fellow. By the time he was becoming productive, the contract was over. More advances 
could have been made if the postdoctoral personnel were already trained in the specific 
area of polychronous modeling and synthesis.  

• The project ended before it was at a stage where it could be transferred to a DoD software 
vendor for creating a robust tool. Transition to a DoD vendor is in the works.  

• Expressing interface behaviors that depend on numeric ratios (e.g., one input comes every 
three times another input comes) is harder to capture in the standard polychronous model 
(it is possible by modeling a counter but the model gets large). The intent was to extend 
this developed theory to polychronous models’ affine clocks to make more efficient 
behavioral types, but the time frame did not allow this.  

• The task to verify if regular expression subsumption could be used for simple interfaces 
was not pursued long enough to achieve results.  

• The case studies of ArduPilot and Autosar platforms are not yet 100% complete. Only 
selected parts of the platforms were modeled in Polychrony (albeit nontrivial percentage) 
and while experimentation with composition and error injection was achieved the goal of 
100 % coverage was not achieved.  
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2 Introduction 
2.1 Motivation 
Building large mission critical software systems often requires use of software components 
designed by multiple vendors or by distinct groups within a single organization. This allows for 
concurrent engineering and reuse of existing components, thereby reducing system development 
time, and cost. Combining independently developed software components to create trustworthy 
software systems, even when the components are pre-verified for correct functionality, is a 
formidable challenge. This is especially true of safety-critical applications, which require a much 
higher level of confidence in their correctness and reliability than other kinds of applications. A 
common practice in the United States is to use tools such as MATLAB/Simulink or Labview to 
create simulation models followed by either hand translation or code generation from these 
models. However, these modeling languages are not endowed with proper formal semantics, and 
the generated code needs thorough (and expensive!) verification before certification. Formal 
methods provide a framework for transforming this practice to one of generation of provably 
correct software. However, even when the individual components are synthesized with such a 
correct-by-construction methodology, the various information items obtained during such 
synthesis/compilation are not usually exported with the component, resulting in loss of 
information (such as temporal behavior at the interface of the components) available in the 
original formal specification of the components. Larger software systems are constructed by 
composing these components from a library. Due to the loss of information one often requires 
reverse engineering of the components to reconstruct that crucial information, some of which 
cannot always be recovered. Even though the static data-types of the variables and the methods at 
the component interfaces (in strongly typed languages) provide type correctness of a 
composition, for concurrent reactive software, mismatches in temporal behaviors of an output 
variable at the interface of one component, and that of an input variable of another component, 
either demands to be bridged by intervening protocols, or they must not be composed. In order to 
extend a correct-by-construction technique for component synthesis to the problem of safe 
composition, one needs to also export relevant information created during the synthesis process 
as behavioral types of the components. This project aimed at developing the structure of such 
behavioral types, and methods for safely composing pre-synthesized components endowed with 
behavioral types. Novel techniques and algorithms based on computing Prime Implicates for 
propositional Boolean theories and Boolean Theories with Presburger arithmetic were also 
developed to address the challenges of component composition leading to a correct-by-
construction composition technique. 

2.1.1.1  Impact and Transformative Potential 
This project brought together experts from formal specification and specification-driven 
synthesis, and from automated deduction and prime implicate computation, to solve an important 
problem of trustworthy large scale mission critical software development. Interaction with the 
U.S. Air Force Research Laboratory, Boeing, and Lockheed Martin indicates that embedded 
software is mostly programmed manually. Even when synthesized, the code is not provably 
correct, and expensive verification is required. Appropriate formalism is rarely used, and cost-
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overruns and delays in final release, for example, in the production of the F-22, are common. 
This research has the potential to significantly improve the reliability of their software 
development processes while substantially reducing costs. 

2.2 Structuring of the Reported Results 
This report details the work accomplished in the project and describes the work done in moderate 
detail. For the convenience of the reader, the sections of this report are numbered based on the 
section numbers in the original proposal where the tasks were described at the inception of the 
project. 

2.3 Statement of Work from the Original Proposal  
4.1. Development of Behavioral Type for Software Components  

4.1.1. Develop a theory of type for temporal behavior at the interface of software 
Components  

4.1.2. Develop methods for behavioral type extraction from MRICDF specification of a 
software component  

4.1.3. Develop methods for behavioral type extraction from C code  
4.2. Development of Behavioral Type Inference Algorithm as a proof technique for 

Trustworthy composition  
4.2.1. Reduction of behavioral type inference to Prime Implicate extraction problem 

4.2.1.1. Investigate if SAT Modulo Theory (SMT) techniques will refine 
behavioral Types  

4.3. Implementation of Behavioral type extraction algorithm in EmCodeSyn Tool  
4.3.1. Implementation of the type extraction from MRICDF models into EmCodeSyn 

Tool  
4.3.2. Possible attempt to automate the extraction of type from C code  

4.4. Implementation of Behavioral type inference algorithm  
4.4.1. Use Prime Implicate extraction tools for type inference implementation within 

EmCodeSyn  
4.5. Development of Prime Implicate extraction algorithms  

4.5.1. Tuning current Murray-Rosenthal Algorithm to only produce certain specific kind 
of prime implicates rather than all, thus reducing time required (In particular unitary 
positive prime implicates)  

4.5.2. Developing an incremental pi-trie algorithm for prime implicates such that every 
subsequent iteration of the prime implicate extraction will not require building a 
completely new pi-trie from scratch, thus reducing time requirement  

4.5.3. Development of interactive prime implicate computing algorithm (user provides 
hints from the structure of the software specification as to what might be possible 
prime implicate which may be easy for user to guess from the MRICDF)  

4.6. Case Study  
4.6.1. Example from Virginia Tech Unmanned Vehicle Control team will be considered 

as demonstration software on which the composition technique will be on going  
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3 Methods, Assumptions and Procedures 
This section provides some background information on the methods and techniques the research 
is based on.  

3.1 Programming Model, and Synthesis Technique 
In the recent past, the group has developed a programming model called Multi-Rate 
Instantaneous Channel Connected Dataflow Actor Model [1, 2, 3, 4], to capture the specification 
of a reactive embedded software. A visual specification and component code synthesis tool called 
EmCodeSyn [2] was also developed which accepts MRICDF specifications in visual or textual 
form, and produces C-code that is correct-by-construction with respect to its MRICDF 
specification. Similar to Esterel [18], Lustre [19], and SIGNAL [6], the model of computation of 
MRICDF is based on the synchrony hypothesis [20], which provides a suitable abstraction from 
computation and communication time, and allows one to focus on the dataflow and computation 
functionality of the required software. Almost all of these formalisms with the exception of 
MRICDF are developed in Europe. Airbus [24], Renault, and other European avionics and 
automotive companies claim to generate a large percentage of their control software using these 
formal approaches. Even though they have been successful in developing modules through these 
methodologies, for composition of modules they use an over simplified composition model based 
on a Time-Triggered Architecture [17]. This requires that each component itself be time triggered 
leading to a number of optimality problems as pointed out in [1, 4]. The semantics of MRICDF is 
not time triggered but rather event triggered, leading to more optimal code synthesis [1]. Time 
triggered composition has another problem other than optimality. It requires precise clock 
synchronization which results in a large overhead. It would be convenient to achieve both 
optimal implementation of individual components and avoidance of the overhead of time 
synchronization over a distributed platform. Therefore, constructing large software systems from 
components synthesized with the proposed tool is much more challenging, but the benefits 
outweigh these difficulties as will be addressed in this project. 
 
The programming model of MRICDF is that of a collection of concurrent processes described by 
data flow relations on infinite streams of data values.1 The synchronization requirements between 
these streams are expressed either implicitly by the data flow relations or by explicit constraints. 
When sequential embedded software is to be synthesized, both data flow relations — 
computation — and synchronization constraints — control — must be considered. This is the 
crux of the compilation/synthesis process for MRICDF. This programming model is more 
suitable for reactive systems compared to other specification models such as temporal logics, 
composition of automata (such as I/O Automata) etc., because it abstracts away timing issues but 
most importantly, it makes specification of synchronization between concurrent activities within 
each component much easier than those other methods. The expression of synchronization 
between concurrently acting behaviors within a system is a major source of errors (deadlocks, 
live-locks, violation of mutual exclusion etc.) in other formalisms.  

                                                           
1Most embedded applications work on infinite streams of data. 
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Given a specification (visual or textual) in MRICDF, a compilation algorithm must decide 
whether there exists a deterministic sequential/multi-threaded code satisfying the constraints, and 
if so, whether it is unique. If not — and thus nondeterministic — the user must provide additional 
constraints to make it so. If this effort fails, the specification is rejected by the compiler. In the 
process of determining implementability and subsequent synthesis, the compiler creates a 
Boolean theory and computes its prime implicates.  

3.2 Boolean Theory and Prime Implicates 
A Boolean theory is a set of Boolean clauses. Let the theory B be defined over a set of Boolean 
variables X. Then [𝑋 → {0,1}] denotes the space of all assignments to variables in X. An 
assignment, 𝑓 ∈ [𝑋 → {0,1}], is a model for theory B, if and only if by assigning the Boolean 
values to all variables x∈X as f(x), one can satisfy all clauses in B.  
 
A Boolean theory that is satisfiable has at least one such model. A prime implicate of a Boolean 
theory is a disjunctive Boolean clause C such that any model of B also satisfies C and there is no 
C1 such that 𝐶1 → 𝐶 and any model of B also satisfies C1. 
 
Given an arbitrary Boolean theory, computing the prime implicate is often of exponential 
complexity. Most current algorithms also require that the Boolean clauses in the theory be first 
converted into a conjunctive normal form (CNF) before applying the algorithm. The recent work 
of Murray and Rosenthal [34] has derived a new algorithm that can produce prime implicates 
(and an implicit representation of all prime implicates) of a Boolean theory where the clauses can 
be in any arbitrary form. However, this algorithm is time consuming. 
 
It is, however, expected that this algorithm may be sped up substantially as the current algorithm 
is agnostic of any special characteristics of the Boolean theory that are generated from MRICDF 
models during computations of their master triggers.  
 
It has been shown in the past that algorithms that are agnostic of the special nature of the inputs 
on which the algorithm is applied have higher time and space complexity than algorithms that 
take into account the special nature of their inputs. For example, finding the chromatic number of 
a graph is known to be NP-Complete, but if one knows that the only graphs needed to compute 
the chromatic number belong to a special class of graphs called "Perfect Graphs," then one can 
come up with special algorithms which can compute the chromatic numbers in polynomial time. 
Similarly, the famous SAT problem that is well known to be NP-Complete can be shown to be 
solvable in polynomial time, if the clauses obtained belong to the class of HORN clauses. Also, 
there is a notion of localization of problem instances. For example, if the variables that occur in 
multiple clauses can be limited to reappear in no more than k clauses. One may say that that SAT 
problem is k-bounded. In such a case, one can devise faster algorithms for solving SAT.  
 
Since the Boolean theories that are generated from MRICDF are very localized, in the sense that 
a clause 𝑥 ↔ 𝑦 v 𝑧, appears only when y and z are inputs to a merge actor in an MRICDF model, 
one can find such locality properties. As a result, Murray and Rosenthal’s algorithms to compute 
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prime implicates may not exploit such locality (referred to as ’regularity’) and it may be required 
to devise new algorithms that work much faster computing prime implicates for such instances.  
 
Members of the project team have past expertise in solving problems with such locality 
properties for various graph and satisfiability problems. So as the research progresses, it is highly 
likely that the discovery and characterization of the Boolean theories that appear during analysis 
of MRICDF models can be solved with much faster algorithms. 
 
Prime implicates enable construction of a hierarchical control structure that creates a 
deterministic schedule of all the computations which are consistent with the control constraints. If 
non-Boolean constraints — for example, x > 10 — are replaced by unrestricted Booleans, the 
resulting theory becomes a conservative abstraction of the more elaborate theory with further 
expressiveness. The latter case would provide better leverage in optimizing the control structure 
and in reducing redundant paths. To this end, the combination of prime implicates algorithms and 
SAT Modulo Theory (SMT) solvers [25] is being investigated. 
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4 Results and Discussion 
4.1 Development of Behavioral Type for a Software component 

4.1.1 Development of a theory of type for temporal behavior at the 
interface of a software Component 
Overview: It was proposed, as a behavioral type, to consider the polychronous model of a 
component. From this model, one could extract and manipulate significant information like clock 
relations and data dependencies and check for the compatibility of the components. The 
compatibility of polychronous components – their ability to be composed – depends on the 
absence of dependency cycles and the calculability of common clocks and signals. The 
framework and the compatibility property have been designed with the goal of composition, thus 
the computations of the properties benefit from modular decomposition. The theories that are 
involved in this work will be described as this report progresses. 

4.1.1.1 Preliminary Definitions 
During the execution of programs, computational activities evolve over time, but not necessarily 
at the same pace in every concurrent thread of execution. It is required to track the computation’s 
progress as a partially ordered set of logical instants. It is partially ordered because it may be 
necessary to keep some events unordered – e.g., two concurrent actions should be able to run 
independently. The computation activities happening to each signal/variable in the system are 
termed events.  
 
Definition 1 (Event) Ξ denotes the set of all events. ≤ is a preorder on Ξ: e≤f means that e occurs 
before or concurrently with f. ∼ is the equivalence relation based on ≤: e∼f means that e and f 
occur simultaneously hence termed synchronous events.  
   
Definition 2 (Logical Instant or Instant) Υ denotes the quotient of Ξ by ∼ as the set of instants. 
Thus a logical instant is a maximal set of events that are synchronous.  
 
Note that synchronous events may have data dependencies and hence may have a partial order 
inside the instant, different from ≤. This different order serves the generation of sequential code. 
    
Definition 3 (Partial order on Instants) Υ/≤ is the partial order on instants based on Ξ /≤:  

∀𝑎, 𝑏 ∈ 𝑌,𝑎 ≤ 𝑏 ⇔  ∃𝛼 ∈ 𝑎,𝛽 ∈ 𝑏 | 𝛼 ≤ 𝛽 
 
The above definition lifts the ≤ and the corresponding strict order < to the set of logical instants 
to compare the order of happening of some of the logical instants.  
 
The entities of the model are signals, defined on instants. A signal is a succession of values, 
happening at some specific instants. This specific succession of instants is the clock of the signal. 
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Definition 4 (Signal) Let T be a set of values – the type and T⊥=T∪{⊥} its extension with a 
special value meant to represent absence, a signal is a functionΥ→T⊥. For all instants in γ⊂Υ 
such that γ is a total order in Υ, it associates a value from T, and for each instant of (Υ−γ) it 
associates the absence value: ⊥. A maximal such γ is the domain of definition for the signal.  

𝑥 ∶ �Υ → 𝑇⊥
� 

𝑥 ∶ �γ → 𝑇� 
𝑥 ∶ Υ − 𝛾 → {⊥}  

 
A signal x is defined over a total ordered set of instants:  

∀𝑝, 𝑞 ∈  Υ,  
𝓍(𝑝) ≠⊥∧ 𝓍(𝑞) ≠⊥⟹ 𝑝 ≤ 𝑞 ∨ 𝑞 ≤ 𝑝 

 
Let us define a characteristic function σ that tells if a signal x is present or absent at any given 
instant t in Υ.  

𝜎 �Υ → 𝑇⊥ → Υ → {𝑡𝑟𝑢𝑒,𝑓𝑎𝑙𝑠𝑒}� 
 𝜎(𝑥)(𝑡) = 𝑡𝑟𝑢𝑒 𝑖𝑓 𝑥(𝑡) ∈ 𝑇  

                    = 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑥(𝑡) = ⊥  
Error! Bookmark not defined. 

Given a signal x, one can also define a clock signal x , clocks and characteristic functions play 
the same role. Characteristic functions will be used in formal definitions and clocks as in this 
example in SIGNAL. 

. ̂ (𝑐𝑙𝑜𝑐𝑘): �Υ → 𝑇⊥ → Υ → {𝑡𝑟𝑢𝑒,𝑓𝑎𝑙𝑠𝑒}� 
 𝜎(𝑥)(𝑡) = 𝑡𝑟𝑢𝑒 𝑖𝑓 𝑥(𝑡) ∈ 𝑇  

                    = 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑥(𝑡) = ⊥  
 

Thus 𝜎(𝑥�) = 𝜎(𝑥) and two signals x and y are synchronous if and only if there exists no instance 
such that, x is present and y is not present and vice versa.   
 
The notation 𝑥(𝑡𝑥0) defined as such: 𝑥(𝑡𝑥0) ∈ 𝑇 and ∀𝑡 ∈ Υ, 𝑡 < 𝑡𝑥0 ⇒  𝑥(𝑡) = ⊥ will also be 
used. In other words, it is the value for signal x at its initial logical instant.  
 
Another notational convenience is nonstandard. The notation 𝑥(𝑡𝑥−1) defined as such: ∀𝑡 ∈ Υ, 
such that 𝑥(𝑡) ∈ 𝑇 and 𝑡 ≠ 𝑡𝑥0 , where 𝑡𝑥−1 ∈ Υ such that 𝑥(𝑡𝑥−1) ∈ 𝑇 and ∀𝑝 ∈ Υ, 𝑡𝑥−1 < 𝑝 <
𝑡 ⇒  𝑥(𝑝) = ⊥ .  
 
Accordingly 𝑡𝑥−1 is actually not an arithmetic subtraction from t, but denotes the last logical 
instant before the instant t, where the signal was defined. The processes are based on relations 
between clocks and signals. These relations or constraints define a system in which inputs are 
provided from the environment and outputs are computed by the system.  
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Definition 5 (Process) A process is a tuple (V, N, C, D)  
• V is a set of signals. 
 
• N is a mapping associating names to signals of V.  

  N ⊆ V × Name 
 
Note that same signal may be named differently in different processes, hence N is a 
relation. It is used in composition of processes, or in instantiation. Two identical processes 
can be instantiated with different N and then work on different signals.  
 

• C is a system of equations that constraints σ functions (i.e., the clocks) with signals. 
Therefore C is constraints on the control flow of the system.  

∀e∈ C, ∃ x ∈V, ∃ t ∈ Υ   
e:= σ(x)(t) = ex

t ({xi(t’)},{σ(xj)(t)}) 
where, ex

t  is a Boolean operation on any signals 𝑥𝑗 ∈ V or clock 𝜎(𝑥𝑗) at the instants t and 
t'=t or 𝑡𝑥𝑖

−1 – that defines σ(x)(t).  
 
Note that it can be shown that if a clock constraint refers values of signals at earlier 
instants, one can always rewrite C so that it depends on the immediate past instant t−1

x . 
Thus the relations in C only refer to current and immediate past instants.  
 

• D is a system of equations that constrains the values taken by the signals together. Thus D 
is the data flow specification of the process.  

∀g∈ D, ∃ x ∈ V, ∃ t ∈𝓍̂  such that 
g:=x(t)= gx

t ({xi(t’)},{σ(xj)(t)}) 
where, gx

t  is a valid function on the type of the values taken by the signals xi∈V or clock 

σ(xj) and the instants t and t'=t or  – that defines x(t). t
−1
xi

 
Some signals and clocks may remain unconstrained or undefined, because they are the free 
variables of the systems. The undefined clocks determine the pace of the program and the 
undefined signals will incrementally determine the values of all other signals. Undefined signals 
may be designed as inputs although some inputs may have constraints.  
 
Example 1 Let us study a SIGNAL process, biadder shown in Figure 1, and its representation 
in this formalism in Figure 2. This process consists of two concurrent threads that accumulate 
values from input x1 on y1 and from input x2 on y2. On a specific instant defined as when both 
inputs carry the value 0, the threads synchronize and the output s carries the sum of both 
accumulations.  
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process biadder = (? integer x1 , x2 ; ! integer y1 , y2 , s ;) 
(| y1 := y1$ init 0 + x1 
 | y2 := y2$ init 0 + x2 
 | s := ( y1 when s ) + ( y2 when s ) 
 | s ^= ( x1 = 0) ^= ( x2 = 0) 
 |) 

Figure 1: Process biadder - a SIGNAL implementation 
 

 
Figure 2: Control flow and Data flow constraints of process Bi-adder 

 
Start with V and N. Not every signal is given a name. Only those that need to be defined or that 
belong to the interface are given names. So the biadder process manipulates some signals with 
no name, for example the Boolean signal (x1 = 0), this signal has a clock (which is x  the clock of 
x) and can be used in an equation. y1$ and y2$ are not signals. Since signals contain the values 
for each instants over which they are defined, y1$ is just a way to design )y1(t−1 . 
 
C contains four equations derived from the SIGNAL code. The first two synchronize x1 with y1 
and x2 with y2. The semantics of SIGNAL, would induce the equations 
∀t∈ Υ,σ(y1)(t)=σ(y1)(t)∧σ(x1)(t) for the “:=" operator and ∀t∈ Υ,σ(y1)(t)=σ(x1)(t) for the “+" 
operator. This was simplified using Boolean rules.  
 
The line 5 of the SIGNAL process would induce the equations ∀t∈ Υ,σ(y1when s)(t)=σ(s)(t), the 
same for y2 and ∀t∈ Υ,σ(s)(t)=σ(y1whens)(t)∧σ(y2whens)(t). Since “y1 when s" and “y2 when 
s” are not used in the other formula, and the definition of “s" is a tautology; these equations are 
not considered. 
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The last line of the process induces two clock equations in C. The clock of s is defined by two 
different equations and relies not only on clocks but also on values (the values of x1 and x2). 
 
D contains the definitions of the signals, those definitions hold only when their clock is true 
(given by the function sigma). Again, definitions of “x = 0” and “y when s” are not given since 
they do not serve the comprehension of the example. Since signals are all of type integer, the + 
operator is valid as the addition of integers.   
 
For a process with a system of clocks, one can define a clock hierarchy. A hierarchy is a stronger 
representation of clocks induced by the clock calculus [48]. If a hierarchy has a unique greatest 
element, this element is called ‘root’ and the hierarchy is a tree. It may also have several roots 
that form a forest. Building a tree or a forest helps determine if the individual states are 
endochronous or weakly-hierarchical and then to check isochrony of the system [53]. It also 
constructs a schedule for an implementation of the system. 
 
Definition 6 (Clock Hierarchy) The control flow constraints C of a process induces a set with a 
relation on clocks of signals – the clock hierarchy H= (V , ≥) defined by the following rules:  

1. for all multi-valued signals x∈V, and all values u that appear on the right hand side of the 
data flow or control flow constraints D,C : 
 x , (x = u)∈ V   
(x   (x = u))∈ H  

2. if C⊧∀t, σ(b)(t) =σ(c)(t) then (b ≥ĉ),(ĉ≥b ), ∈ H written (b ∼ĉ)  
3. if ∃g∈{when, default},D⊧b1(t)=g(c1(t),c2(t)) and (b 2≥ĉ1),(b 2≥ĉ2)∈H then b 2≥b 1∈H. 

   
Definition 7 (Root) The Clock Hierarchy of a nonempty process is a partially ordered set with at 
least one greatest element. A signal r is a root in the hierarchy if ∀x∈V , x≥ r ∈ H ⇒ x = r. A 
signal rο is a unique root of H if ∀x∈ H, r0 ≥ r.  
 
The system of equations C and D induces a graph on signals, the instantaneous dependency graph 
[45]. This graph represents the relation of dependencies between signals. This graph says that in 
some logical instant, a signal cannot be computed without knowing the value or presence of a 
second signal. It is important that such dependency graphs have no constructible cycle. If a cycle 
exists in the graph, at least two signals are mutually dependent and they cannot be calculated. 

   
Definition 8 (Exclusive clocks) In a Hierarchy, two clocks are exclusive # if they depend of two 
different values of a same signal.  

∀x, y∈H, x # y ⇔ ∃ z ∈ H; u, v ∈ domain (z) |u ≠ v∧ [z=u] ≥ x∧ [z=v] ≥ y 
   
Definition 9 (Dependency graph of a process) Systems C and D induce a graph on signals: the 
dependency graph G = (V, →) where → is the relation of dependency: x(t)→ y(t) means that C 
contains an equation σ(y)(t)=ey

t (x)(t) or D contains an equation )y(t)=fy
t (x)(t . Let →+ denote 
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transitive closure of →. The process is cyclic iff, ∃𝑡 ∈ 𝑌,∃𝑥,𝑦 ∈ 𝐺, 𝑥 ≠ 𝑦, 𝑥(𝑡) →+ 𝑦(𝑡) 
and 𝑦(𝑡) →+ 𝑥(𝑡). 
   
Definition 10 (Form of a hierarchy) A hierarchy is well-formed iff ∀𝑥 ∈ 𝐻, there does not 
exist 𝑦, 𝑧 ∈ 𝐻|𝑦 ≥ 𝑥 𝛬 𝑧 ≥ 𝑥 𝛬 𝑦#𝑧. A process with an ill-formed hierarchy may block on some 
inputs.  

4.1.1.2 Compilability of Processes – Endochrony and Weak-Hierarchy 
Endochrony of a process means that the process is able to read a flow of values irrespective of the 
time delays between subsequent values on the inputs, and still behaves deterministically. 
Endochrony is checked for different reasons – to ensure that a sequential implementation of a 
polychronous process can run deterministically in a latency insensitive manner – also to check if 
an asynchronous composition of processes will behave the same way as its synchronous 
composition, for instance read the values that are expected and emit them when they are needed. 
This second property is called isochrony between components and needs to be checked if the 
components are to be distributively deployed.  
 
The definition of endochrony is expressed in terms of behaviors of processes. It is the property of 
a process that it is insensitive to the loss of timing relation between its inputs. Methods for 
checking endochrony are well studied [45], for example on the basis of theorems.   
  
Definition 11 (Endochrony) An endochronous process is a process that can reconstruct the 
timing relations of its signals from input streams of data with no timing relation [47]. 
 
This property has been expressed in the formalism of clock hierarchies and data dependencies in 
the past.  
 
Theorem 1 (Endochrony of a Process) A process is endochronous iff it has a well-formed and 
acyclic clock hierarchy with a unique root. For proof, see [52]. 
 
Another property of polychronous processes termed weak hierarchy has been defined in an 
attempt to extend the set of compilable processes by adding a class of constrained compositions 
of endochronous processes. Previously the weak-endochrony property [50] was defined that 
included endochronous processes and some of their compositions. However, weak-endochrony 
does not necessarily imply compilability. A weakly-endochronous process can be blocking, for 
instance, with a deadlock. The set of weakly hierarchical processes has been shown to sit 
between the set of endochronous processes and the set of weakly-endochronous processes [49]. 
 
Definition 12 (Weak hierarchy) A process is weakly hierarchical if and only if either:  

• It is endochronous;  
• It is the composition of some weakly hierarchical processes such that the hierarchy H of 

the composition is well-formed and the dependency graph G is acyclic.  
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Example 2 Recall the process biadder from Figure 1. It may be decomposed into three 
processes, which can be proven endochronous (x1 is the root of P1, x2 the root of P2 and s the 
root of P3). Furthermore, it may be proven that their composition is well-formed and does not 
introduce cycles. Thus, biadder is weakly-hierarchic. 
 

Process biadder = (? integer x1, x2; ! integer y1, y2, s;) 
(| P1 : (| y1 := y1$ init 0 +x1 
         | s ^= (x1 = 0) |) 
 | P2 : (| y2 := y2$ init 0 +x2 
         | s ^= (x2 = 0) |) 
 | P3 : (| s := ( y1 when s ) + (y2 when s) |) 
 |) 

Figure 3: Process biadder - a weakly hierarchical implementation 

4.1.1.3 Non blockage of weak-hierarchic composition 
Given the definition of weak hierarchy, a weakly hierarchic composition has to be non-blocking. 
This means that the components that are composed must be acyclic and have a well formed 
hierarchy. Since composition occurs on components that are already acyclic and well formed, the 
non-blocking checking can be done on the interface. 
 
Lemma 1 Knowing that P and Q are both weakly hierarchic, the condition of cyclicity can be 
checked only on the interface of P and Q.  

• Let P and Q be two processes. The dependency graph of the interface of P and Q is called 
and the union of the transitive closures of the dependency graph of P and Q projected to 
their interface P∩Q.  

 
• If P and Q are acyclic process and the dependency graph of the interface of P and Q is 

acyclic then the composition P|Q is acyclic.  
 
• The composition of P and Q is cyclic if for any pair of signals x, y that belong to the 

interface P∩Q, P holds a dependency between x and y and Q holds the opposed 
dependency.  

4.1.1.4 Clock Checking – Isochrony 
Isochrony is the property that shows clock compatibility. Isochrony ensures that a system can be 
desynchronized – i.e., the composed components are tolerant to latency and can communicate 
through asynchronous channels without missing any communicated values, and result in 
deterministic execution.  

   
Definition 13 (Isochrony) A system of processes is isochronous if the asynchronous composition 
of the processes has the same behavior as their synchronous composition. 
  
The behaviors of two processes are considered the same if the sequences of data values on 
corresponding signals are the same given the same sequence of values on all inputs. This is called 
flow equivalence [46]. In other words, the information on alignment of the values to logical 
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instants can be ignored while considering this equivalence. These have been considered in much 
detail in [46, 52].  

 
Theorem 2 (Isochrony with Endochrony) A system of processes is isochronous if the composition 
of the processes is endochronous.    
 
process endochronous_composition = (? C_1, C_2, C_s, x_1, x_2; ! integer s;) 

(| s1 := P1(C_1,C_s,x1) 

 | s2 := P2(C_2,C_s,x_2) 

 | s  := P3(s1,s2) 

 |) where s1, s2; 

    process P1 = (? C_x, C_out, x; ! out) 

    (| x ^= when C_x 

     | y := y$ init 0 + x 

     | out := y when C_out 

     |) where y ; 

    process P2 = (? C_x, C_out, x; ! out) 

    (| x ^= when C_x 

     | y := y$ init 0 + x 

     | out := y when C_out 

     |) where y ; 

    process P3 = (? s_1, s_2; ! s) 

    (| s := s_1 + s_2 

    |) 

end 
Figure 4: Isochrony of an Endochronous composition 

 
Figure 4 provides an example.  Process endochronous_composition is isochronous because each 
of the composed processes is endochronous and the composition is itself endochronous. The main 
clock, which has to be faster than every input, and the actual presence of an input at this clock 
exist. P1 and P2 share the global clock, even if during some instants of this clock, when one input 
is absent, the process may not be working. Also note that the clock of P3 is “when C_s”, which is 
different than the global clock. This is still correct because “when C_s” is a subclock of the 
global clock and the hierarchy of clock is respected.  
 
This theorem has long been the rule in synchronous system. Proving that a system is 
endochronous is equivalent to finding a global clock of a system and relating every signal to this 
global clock. Unfortunately this can be very inefficient in heterogeneous systems where different 
components are paced at different clocks. In polychronous systems, which represent the best of 
these kinds of systems, the aim is to find a way to ensure isochrony of systems without 
synchronizing components to a global clock. To achieve the property of isochrony, weak-
hierarchy is used.  
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Theorem 3 (Isochrony with Weak-Hierarchy) A system of processes is isochronous if each 
process is weakly hierarchical and their synchronous composition is also weakly hierarchical.  

 
Proof (See [49]). The proof uses two properties of isochrony: (1) a non-blocking composition of 
two endochronous processes is isochronous and (2) a composition of processes in which every 
pair of processes is isochronous, is also isochronous. Since a weakly hierarchical process is a 
non-blocking composition of n-endochronous processes, each pair of processes forms an 
isochronous sub-system and the whole system is isochronous.    
 
process weak_hierarchy_composition = (? C_s1, C_s2, x_1, x_2 ;! integer s;) 

 (| s1 := P1(C_s1,x1)  

  | s2 := P2(C_s2,x_2) 

  | s ^= when C_s1 ^= when C_s2 

  | s  := P3(s1,s2) 

  |) where s1, s2; 

 process P1 = (? C_out, x; ! out) 

   (| y := y$ init 0 + x 

    | out := y when C_out 

    |) where y ; 

 process P2 = (? C_out, x; ! out) 

   (| y := y$ init 0 + x 

    | out := y when C_out 

    |) where y ; 

 process P3 = (? s_1, s_2; ! s) 

   (| s := s_1 + s_2 

    |) 

end 
Figure 5: Isochrony of a weakly hierarchic composition 

 
Figure 5 provides a second example of composition which is no longer endochronous despite the 
fact that each process of the composition is actually endochronous. The clocks of the process P1 
and P2 can be different and unrelated. The clock of P3 is no longer a subclock of the global clock 
but it is still a subclock of P1’s and P2’s. The relation between the clock of P3 and the clocks of 
P1 and P2 is given by the equation “s =  when C_s1 =  when C_s2”. The set of clock relation 
induces an order relation which is not total.  
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4.1.2  Develop methods for behavioral type extraction from 
MRICDF specification of a software component 

4.1.2.1 Problems 
1. Earlier MRICDF to SIGNAL code generation techniques treated function actors with a C 

definition as normal assignments. Also when the SIGNAL code was generated, – function 
call, interface details, function definition and the declaration were ignored. Any MRICDF 
model with a function actor was useless, except for direct C code generation. Conversion 
of MRICDF to SIGNAL was not able to be performed directly.  
 

2. If one signal was branched out to multiple actors, the earlier way of handling conversion 
resulted in all signals being randomly assigned. For example, if signal a is an output of 
actor A coming from port p0 and is connected to input port p1 of actor B, input port p2 of 
actor C and input port p3 of actor D. Conversion assigns p1.B=p2.C, p2.C=p3.D and 
p1.B=p0.A, which is not correct. Because of this there are problems in calling C functions 
with arguments.  

 
3. Because of these problems behavioral type extraction from MRICDF models with function 

actors are not able to be performed.  

4.1.2.2 Solution  
1. The assignment was corrected in conversion. Now B.p1=p0.A, C.p2=p0.A and D.p3=p0.A 

allowing function calls with arguments to be converted properly.  
 

2. Generation of SIGNAL code from MRICDF is complete. It has been tested for the 
benchmark examples and works correctly.  

 
3. Type information is able to be generated from the MRICDF models.  

4.1.2.3 Anticipated problems and future work 
1. Currently type extraction is done by converting MRICDF models to SIGNAL 

specifications and then using the “−spec" option for extracting the clock information 
regarding signals and sub-processes. The extracted information might contain a lot more 
information than what is needed. In the future, refining the extraction process to ignore 
detailed information will be explored.  

 
2. A C function calling another C function is not currently handled. Each function actor can 

call only one C function. This might lead to restrictions in future designs but none have 
been noted as of now. The fix can be easy implemented in the future.  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
17 

4.1.2.4 Extended Report: Develop methods for behavioral type extraction from MRICDF 
specification of a software component 
Development of large software by means of a modular design approach often leads to long delays 
due to interface differences between interacting modules. Extracting behavioral type information 
from such software can provide us with valuable information to construct a formal foundation to 
investigate various compositional design methodologies between various interacting modules. 
Extraction of behavioral type information can be done at various stages, during the development 
process, or post-development during integration. This work focuses on how to extract behavioral 
type information during the development phase of the project. Once extracted, this information 
can be further used during integration to check the compatibility of various modules. Further, this 
work has been restricted to extracting behavioral information during the EmCodeSyn based high-
level software synthesis methodology. Section 4.1.3 will discuss how to extract behavioral type 
information from C programs. 
 
MRICDF is a data-flow specification. It does not store behavior type information. Hence it is 
necessary to transform it to another form, from which one can extract the behavior type 
information. To get into the required form, a source-to-source translation of the given MRICDF 
specifications to SIGNAL specifications is performed. All the primitive actors except function 
actor get translated to the corresponding actors in SIGNAL. The low level implementation details 
specified inside function actors are all abstracted and only the interface details are exported as the 
SIGNAL specifications. Since the functions are supposed to be executed in a single instant, just 
the interface details are sufficient to do the compatibility check. From the abstracted SIGNAL 
specifications, one can derive the clock relations, dependency information, and check for 
compatibility, causal loops, deadlocks, live-locks, race conditions etc. This methodology is 
illustrated with an example below.  
 
Consider a simple producer-consumer system designed using EmCodeSyn. The data-flow model 
is shown in Figure 6. Function actors F1 and F2 represent producer and consumer modules 
respectively. Buffer actor B1 is used to provide feedback to function actor F1 and buffer actor B2 
is used to tap the output of the consumer. 

  

 
Figure 6: Producer-Consumer System 
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The actual behavior of the producer and consumer is specified using C function but the signals on 
which the producer produces inputs and the consumer consumes the inputs are specified 
externally. These control signals and their logic get exported as SIGNAL specifications but the 
implementation details of producer and consumer modules are hidden. The translated SIGNAL 
specification is shown in the listing of Figure 7.  

 
process prodcons = 
( ? boolean F1i2;! integer B2o4;) 
( 
| F1o1 := F1_prod1(F1i1, F1i2) 
| F1i1 := B1o3 
| F2o2 := F2_cons1(F2i3) 
| F2i3 := F1o1 
| B1o3 := B1i4 $ init 1 
| B1i4 := F2o2 
| B2o4 := B2i5 $ init 1 
| B2i5 := F2o2 
|) 
where 
integer F1i1, F2i3, B1i4, B2i5, F1o1, F2o2, B1o3; 
function F1_prod1 = 
( ? integer F1i1; 
boolean F1i2; 
! integer F1o1; 
) 
; 
function F2_cons1 = 
( ? integer F2i3; 
! integer F2o2; 
) 
; 
end % prodcons %; 

Figure 7: Producer-Consumer System Translated SIGNAL Specification 
 

To get the corresponding clock relations and dependency information between various signals 
and modules, one would compile the abstracted SIGNAL specifications using the Polychrony 
compiler with “−spec" option,. This information is shown in the listing of Figure 8. With this 
information one can perform checks for compatibility, causal loops, deadlocks, livelocks, race 
conditions etc. 
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process prodcons_POLY_TRA = 
     ( ? boolean F1i2; 
       ! integer B2o4; 
     ) 
   pragmas  
      Main 
   end pragmas 
   (| (| CLK_F1i2 := ^F1i2 
       | CLK_F1i2 ^= F1i2 ^= B2o4 
       | ACT_CLK_F1i2{} 
       |) |) 
   where  
   event CLK_F1i2; 
   process ACT_CLK_F1i2 = 
        ( ) 
      (| CLK_F1i2 ^= F1o1 ^= F2o2 ^= B1o3 
       | (| B2o4 := F2o2$1 init 1 
          | B1o3 := F2o2$1 init 1 
          | F1o1 := F1_prod1(B1o3,F1i2) 
          | F2o2 := F2_cons1(F1o1) 
          |) 
       |) 
      where  
      integer F1o1, F2o2, B1o3; 
      end 
   %ACT_CLK_F1i2%;  
   function F1_prod1 = 
        ( ? integer B1o3; 
            boolean F1i2; 
          ! integer F1o1; 
        ) 
      external 
   %F1_prod1%;  
   function F2_cons1 = 
        ( ? integer F1o1; 
          ! integer F2o2; 
        ) 
      external 
   %F2_cons1%;  
   end 
%prodcons_POLY_TRA%; 

Figure 8: Producer-Consumer System Behavioral Information 

4.1.2.5 Anticipated problems and Future work 
Currently type extraction is performed by converting MRICDF models to SIGNAL specifications 
and then using “−spec" option for extracting the clock information regarding signals and sub-
processes. The extracted information might contain a lot more information than what is needed. 
In the future, refinement of the extraction process to ignore detailed information will be 
investigated. A C function calling another C function is not handled currently. So each function 
actor can call only one C function. This might lead to design restrictions in future. The approach 
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to use the C−to−Signal extraction tool to extract behaviors regarding internal function calls from 
top-level C routines will be investigated. 

4.1.3  Develop methods for behavioral type extraction from C code 

4.1.3.1 Work Completed 
C code with the following constructs can be successfully converted to SIGNAL code using the C 
to SIGNAL (CTS) tool.  
 

1. Assignments  
 

2. If else  
 

3. Nested if else  
 

4. While loop  

4.1.3.2 Anticipated problems and future work 
1. SIGNAL code generated for “for" loops, “do...while", “if...else inside while" have to be 

tested.  
 
2. Function calls inside a function have to be handled.  

4.1.3.3 Extended Report: Automatic Conversion of C code to SIGNAL code 
The C to SIGNAL conversion is achieved in two steps. The C code is first converted to its Static 
Single Assignment (SSA). Then the SSA is converted into SIGNAL by the CTS tool. SSA is an 
intermediate form where each variable is assigned exactly once. The SSA form is obtained from 
the C code with the help of GNU Compiler Collection (GCC).  

  

 
Figure 9: C to Signal Conversion Steps 
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4.1.3.3.1 C to SSA conversion 
GCC generates the SSA code from the C code after some intermediate conversions. The GCC 
first converts the C code into Gimple Trees. The Gimple Trees are converted into a Control Flow 
Graph (CFG). The Control Flow graph is finally converted into SSA. This is done by GCC. 

4.1.3.3.2 SSA to SIGNAL conversion 
The generated SSA is parsed and relevant information is stored in a data structure. The block 
names, variables, constant variables, inputs, outputs, conditions and assignment statements in the 
SSA are parsed using regular expressions and stored in a data structure. The conversion of SSA 
to C code is described below: 

4.1.3.3.3 SSA Blocks 
The SSA consists of blocks which correspond to the various states in the program. Since all of 
the blocks consist of atomic statements with exactly one assignment for each variable, all of these 
statements can be executed in parallel. An enum type lbl is created in the SIGNAL code which 
takes names of all the blocks in the SSA. For example, if the SSA has blocks - <bb 2>, <bb 3>, 
<bb 4>, <bb 5>, the SIGNAL code is as follows: 

  
type lbl = enum (bb2, bb3, bb4, bb5); 
lbl label1, label_past; 

 
label_past is the delayed version of label1. label1 and label_past are used to describe the state 
transitions which handle the control flow based on the conditions. 

4.1.3.3.4 Assignment Statements 
The assignment statements in SSA have the same form as in SIGNAL. Hence they are directly 
used from the SSA without any changes. An example of assignment statement in SSA is: 

  
In C:      num = num + 2; 
In SSA:    num_4 = num_1 + 2; 
In SIGNAL: num_4:= num_1 + 2 

4.1.3.3.5 PHI function 
The PHI function is used to decide the final value of the variable from different versions of the 
variable based on the value of the basic block. The PHI functions are transformed to 
“when...default" statements in SIGNAL. 

  
In SSA:    num_1 = PHI <num_5(4), num_6(5)> 
In SIGNAL: num_1:= num_5 when (label1 = #bb4) default  
                  num_6 when (label1 = #bb5) default num_1z 

 
Here num_1z is the delayed version of num_1. 
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4.1.3.3.6 Conditional statements 
The conditional statements specify the branching to a different block based on certain conditions. 
These are transformed to SIGNAL code using the enum lbl. 

  
SSA: 
  <bb 3>: 
    if (num_4(D) > 99) 
      goto <bb 4>; 
    else 
      goto <bb 5>; 
   
SIGNAL: 
label1 := #bb4 when (label_past = #bb3)and(num_4buf > 99) default 
         #bb5 when (label_past = #bb3)and(num_4buf <= 99) default 

 
Here the buffered value of the input (num_4) is used. The buffered input is described in the next 
section. 

4.1.3.3.7 Buffered values 
The input variables and the variables in the PHI function need to be buffered in the SIGNAL 
code. For example, if int a_2 is the input and  
 

num_1 = PHI <num_5(4), num_6(5)>  
 
is the PHI function, the signal code for buffered values is as follows: 

  
|a_2bufz := a_2buf $ init 0 
|a_2buf  := a_2 when (label_past = #bb2) default a_2bufz 
 
|num_1z := num_1 $ init 0; 

 
The initial value for num_1 is a constant value if a constant value is assigned to it in the C code 
else it is 0. 

4.1.3.3.8 Code Examples 
Examples of C programs, their corresponding SSA and the automatically generated SIGNAL 
programs are given below. 

4.1.3.3.8.1 If else 
C Code 

int ifElse(int flag1, int num) 
{ 
if(flag1 == 0) 

num++; 
else 

num--; 
return num; 
} 
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SSA form 

int ifElse(int, int) (int flag1, int num) 
{ 
 int D.1242; 
 
<bb 2>: 
 if (flag1_2(D) == 0) 
    goto <bb 3>; 
else 
    goto <bb 4>; 
 
<bb 3>: 
 num_4 = num_3(D) + 1; 
 goto <bb 5>; 
 
<bb 4>: 
 num_5 = num_3(D) + -1; 
 
<bb 5>: 
 # num_1 = PHI <num_4(3), num_5(4)> 
 D.1732_6 = num_1; 
 return D.1242_6; 
} 

 

SIGNAL code: 
process ifElse = (? integer flag1_2, num_3; 
!integer out1) 
(| flag1_2bufz := flag1_2buf $ init 0 
 | flag1_2buf := flag1_2 when (label_past = #bb2) default flag1_2bufz 
 | num_3bufz := num_3buf $ init 0 
 | num_3buf := num_3 when (label_past = #bb2) default num_3bufz 
 | label_past := label1 $init #bb2 
 | label1 :=   
#bb3 when (label_past = #bb2) and (flag1_2buf = 0) default 
#bb4 when (label_past = #bb2) and (flag1_2buf /= 0) default 
#bb5 when (label_past = #bb3) or (label_past = #bb4) default #bb2 
 | num_4 := num_3buf + 1 
 | num_5 := num_3buf + -1 
 | D01242_6 := num_1z 
 | num_1z := num_1 $ init 0 
 | num_1:= num_4 when (label1 = #bb3) default 

 num_5 when (label1 = #bb4) default num_1z 
 | out1 := D01242_6 when (label1 = #bb5) 
 | flag1_2^= num_3^= when (label_past = #bb2) 
 | num_1 ^= num_1z ^= label1 ^= label_past 
 | num_3buf ^= flag1_2buf 
 |) 
where 
integer num_4; integer num_5; integer D01242_6; integer num_1; 
integer flag1_2buf, flag1_2bufz; 
integer num_3buf, num_3bufz; 
integer num_1z; 
type lbl = enum (bb2, bb3, bb4, bb5); 
lbl label1, label_past; 
end; 
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4.1.3.3.8.2 Nested if else 
C Code 

int nestedIfElse(int flag1, int num) 
{ 
    if(flag1==0) 
   { 
      if(num >= 100) 

  num++; 
     else 
  num=num+2; 
   } 
   else 
      num--; 
   return num; 
} 

 
SSA representation: 

;; Function int nestedIf(int, int)  
int nestedIfElse(int, int) (int flag1, int num) 
{ 
   int D.1735; 
 
<bb 2>: 
   if (flag1_3(D) == 0) 
goto <bb 3>; 
   else 
goto <bb 7>; 
 
<bb 3>: 
   if (num_4(D) > 99) 
goto <bb 4>; 
   else 
goto <bb 5>; 
 
<bb 4>: 
   num_5 = num_4(D) + 1; 
   goto <bb 6>; 
 
<bb 5>: 
   num_6 = num_4(D) + 2; 
 
<bb 6>: 
   # num_1 = PHI <num_5(4), num_6(5)> 
   goto <bb 8>; 
 
<bb 7>: 
   num_7 = num_4(D) + -1; 
 
<bb 8>: 
   # num_2 = PHI <num_1(6), num_7(7)> 
   D.1735_8 = num_2; 
   return D.1735_8; 
} 

 
SIGNAL Code 

process nestedIfElse = (? integer flag1_3, num_4; 
!integer out1) 
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(| flag1_3bufz := flag1_3buf $ init 0 
 | flag1_3buf := flag1_3 when (label_past = #bb2) default flag1_3bufz 
 | num_4bufz := num_4buf $ init 0 
 | num_4buf := num_4 when (label_past = #bb2) default num_4bufz 
 | label_past := label1 $init #bb2 
 | label1 :=  
#bb3 when (label_past = #bb2) and (flag1_3buf = 0) default 
#bb4 when (label_past = #bb3) and (num_4buf > 99) default 
#bb5 when (label_past = #bb3) and (num_4buf <= 99) default 
#bb6 when (label_past = #bb4) or (label_past = #bb5) default 
#bb7 when (label_past = #bb2) and (flag1_3buf /= 0) default 
#bb8 when (label_past = #bb6) or (label_past = #bb7) default #bb2 
 | num_5 := num_4buf + 1 
 | num_6 := num_4buf + 2 
 | num_7 := num_4buf + -1 
 | D01245_8 := num_2z 
 | num_1z := num_1 $ init 0 
 | num_2z := num_2 $ init 0 
 | num_1:=  

num_5 when (label1 = #bb4) default 
       num_6 when (label1 = #bb5) default num_1z 
 | num_2:=  

num_1 when (label1 = #bb6) default 
       num_7 when (label1 = #bb7) default num_2z 
 | out1 := D01245_8 when (label1 = #bb8) 
 | flag1_3^= num_4^= when (label_past = #bb2) 
 | num_1 ^= num_1z ^= num_2 ^= num_2z ^= label1 ^= label_past 
 | flag1_3buf ^= num_4buf 
 |) 
where 
  integer num_5; integer num_6; integer num_1; integer num_7; 
  integer D01245_8; integer num_2; 
  integer flag1_3buf, flag1_3bufz; 
  integer num_4buf, num_4bufz; 
  integer num_1z; 
  integer num_2z; 
  type lbl = enum (bb2, bb3, bb4, bb5, bb6, bb7, bb8); 
  lbl label1, label_past; 
end; 

4.1.3.3.8.3 While loop 
C Code 

int whileCode(int n) 
{ 
    int i=0; 
    int result=1; 
    while(i<3) 
    { 

result=result*n; 
i++; 

    } 
    return result; 
} 

 
SSA form: 

;; Function int cube(int) (_Z4cubei) 
int whileCode(int) (int n) 
{ 
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   int result; 
   int i; 
   int D.1243; 
   bool D.1733; 
 
<bb 2>: 
   i_3 = 0; 
   result_4 = 1; 
   goto <bb 4>; 
 
<bb 3>: 
   result_6 = result_2 * n_5(D); 
   i_7 = i_1 + 1; 
 
<bb 4>: 
   # i_1 = PHI <i_3(2), i_7(3)> 
   # result_2 = PHI <result_4(2), result_6(3)> 
   D.1733_5 = i_1 <= 2; 
   if (D.1733_5 != 0) 
      goto <bb 3>; 
   else 
      goto <bb 5>; 
 
<bb 5>: 
    D.1243_9 = result_2; 
    return D.1243_9; 
} 

 
SIGNAL Code 

process whileCode = (? integer n_5; 
!integer out1) 

(| n_5bufz := n_5buf $ init 0 
  | n_5buf := n_5 when (label_past = #bb2) default n_5bufz 
  | label_past := label1 $init #bb2 
  | label1 :=  
#bb3 when (label_past = #bb4) and (i_1z <= 2) default  
#bb4 when (label_past = #bb2) or (label_past = #bb3) default  
#bb5 when (label_past = #bb4) and (i_1z > 2) default  
#bb2 
  | result_6 := result_2z * n_5buf 
  | i_7 := i_1z + 1 
  | D01243_8 := result_2z 
  | i_1z := i_1 $ init 0 
  | result_2z := result_2 $ init 1 
  | i_1:= i_3 when (label1 = #bb2) default  
     i_7 when (label1 = #bb3) default i_1z 
  | result_2:= result_4 when (label1 = #bb2) default 
            result_6 when (label1 = #bb3)default          result_2z 
  | out1 := D01243_8 when (label1 = #bb5) 
  | n_5^= when (label_past = #bb2) 
  | i_1 ^= i_1z ^= result_2 ^= result_2z ^= label1 ^= label_past 
  |) 
where 
  integer result_6; integer i_7; integer i_1; integer result_2; integer 
D01243_8; 
  integer n_5buf, n_5bufz; 
  integer i_1z; 
  integer result_2z; 
  type lbl = enum (bb2, bb3, bb4, bb5); 
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  lbl label1, label_past; 
  constant integer i_3 = 0; 
  constant integer result_4 = 1; 
end; 

4.1.3.4 Extended Report: Automatic Conversion of C code to SIGNAL code, March 2012 
update 

4.1.3.4.1 Introduction 
The C to SIGNAL tool which was developed, generated a long SIGNAL program with a large 
number of variables. With the goal to get a small SIGNAL program with few variables, the 
existing tool was modified. The first step involving converting the C code to its Static Single 
Assignment form remains the same. The second step of converting the SSA to SIGNAL has been 
changed to achieve an optimized SIGNAL program.  

4.1.3.4.2 SSA To SIGNAL Conversion 
The generated SSA is parsed and relevant information is stored. The way the SIGNAL program 
is generated from the information stored has changed.  

4.1.3.4.3 SSA Blocks 
The SSA blocks which correspond to the different states of the program remain the same. An 
additional <bb 0> state is added to the list of states. The <bb 0> state corresponds to initial state 
from where the program enters.  

  
type lbl = enum (bb0,bb2, bb3, bb4, bb5); 
lbl label1, label_past; 

 
label_past is the delayed version of label1. label1 and label_past are used to describe the state 
transitions which handle the control flow based on the conditions. 
 

|label_past := label1 $init #bb0 

4.1.3.4.4 PHI function 
The PHI function is used to decide the final value of the variable based on the value of the basic 
block. The PHI functions are transformed to “when...default" statements in SIGNAL. The 
optimization in the SIGNAL code is achieved by substituting the variables from the assignment 
statements.  

  
 |f := fNbuf when (label1 = #bb2) default 
    (fz+ -10) when (label1 = #bb4) default 
    (fz+10) when (label1 = #bb5) default  
    fz 

4.1.3.4.5 Conditional statements 
The conditional statements have not been changed. They represent the branching to a different 
block based on certain conditions. 
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4.1.3.4.6 Code Example 
An example C program, its corresponding SSA and the SIGNAL program are given below. 
 
C Code  

int whileIf (int n, int f) 
{ 
    int i = 0;     
    while(i<3) 
    { 
        if(f > 100) 
        { 
            n = n+2; 
            f = f-10; 
            i++; 
        } 
        else 
        { 
            n= n-2; 
            f= f+10; 
            i++; 
        } 
    } 
    return n; 
} 

 
SSA Form 

;; Function whileIf (whileIf) 
 
whileIf (int n, int f) 
{ 
  int i; 
  int D.1256; 
 
<bb 2>: 
  i_4 = 0; 
  goto <bb 6>; 
 
<bb 3>: 
  if (f_2 > 100) 
    goto <bb 4>; 
  else 
    goto <bb 5>; 
 
<bb 4>: 
  n_7 = n_1 + 2; 
  f_8 = f_2 + -10; 
  i_9 = i_3 + 1; 
  goto <bb 6>; 
 
<bb 5>: 
  n_10 = n_1 + -2; 
  f_11 = f_2 + 10; 
  i_12 = i_3 + 1; 
 
<bb 6>: 
  # n_1 = PHI <n_5(D)(2), n_7(4), n_10(5)> 
  # f_2 = PHI <f_6(D)(2), f_8(4), f_11(5)> 
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  # i_3 = PHI <i_4(2), i_9(4), i_12(5)> 
  if (i_3 <= 2) 
    goto <bb 3>; 
  else 
    goto <bb 7>; 
 
<bb 7>: 
  D.1256_13 = n_1; 
  return D.1256_13; 
 
} 

 
SIGNAL program 

process whileIf = (? integer nN, fN; !integer out1) 
 
(|nNbufz := nNbuf $ init 0 
 |nNbuf := nN when (label1 = #bb2) default nNbufz 
 |fNbufz := fNbuf $ init 0 
 |fNbuf := fN when (label1 = #bb2) default fNbufz 
 |label_past := label1 $init #bb0 
 |label1 :=   
#bb2 when (label_past = #bb0) default 
#bb3 when  (label_past = #bb6) and (iz <= 2) default 
#bb4 when  (label_past = #bb3) and (fz > 100) default 
#bb5 when  (label_past = #bb3) and (fz <= 100) default 
#bb6 when  (label_past = #bb2) or  (label_past = #bb4) or   (label_past = #bb5) 
default 

#bb7 when  (label_past = #bb6) and (iz > 2) default #bb0 
 
 | i := iL when (label1 = #bb2) default 
         (iz+1) when (label1 = #bb4) default 
         (iz+1) when (label1 = #bb5) default  
          iz 
 | iz := i $ init 0 
 
 |n := nNbuf when(label1 = #bb2) default 
         (nz+2) when (label1 = #bb4) default 
         (nz-2) when (label1 = #bb5) default  
         nz 
 |nz := n $ init 0 
 
 |f := fNbuf when (label1 = #bb2) default 
       (fz+ -10) when (label1 = #bb4) default 
       (fz+10) when (label1 = #bb5) default  
       fz 
 |fz := f $ init 0 
 
 |out1 := nz when (label1 = #bb7) 
  
 |nN ^= fN ^= when (label1 = #bb2) 
 |i ^= iz ^= n ^= nz ^= f ^= fz ^= label1 ^= label_past ^= nNbuf ^= fNbuf 
 |) 
 
where  
    integer i, iz, n, nz, f, fz, D01246_13, nNbuf, nNbufz, fNbuf,   fNbufz; 
    constant integer iL = 0; 
    type lbl = enum(bb0, bb2, bb3, bb4, bb5, bb6, bb7); 
    lbl label_past, label1; 
end;   
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4.2  Development of Behavioral Type Inference Algorithm as a proof 
technique for Trustworthy composition 

4.2.1  Reduction of behavioral type inference to Prime Implicate 
extraction problem. 
Section 4.1 defined a weak-hierarchic process as the composition of endochronous processes. 
Using the code generation designed for endochronous processes and the decomposition strategy 
of this section to generate a composition of threads seems to be the right idea. This idea makes 
more sense in light of a trivial example, the parallel copy (|x:=a|y:=b|). The implementation can 
obviously be done using two threads and the absence of communication makes the endochronous 
code generation perfect for this translation. However, this approach brings two new problems: 
The first one is to find a good decomposition. Theory tells us that a composition of endochronous 
processes is weak-hierarchic and can be compiled, but given a weak hierarchic process how to 
find the good decomposition and the elemental pieces of endochronous code is an issue. The 
second problem is to manage the communication between the threads; shared variables need 
asynchronous synchronizations. 

4.2.1.1  Semantic of the problem 

4.2.1.1.1 Polychronous Elements 
This section, introduces some formal definitions to precisely define the concepts of Polychrony.  
Informally, in a polychronous component, the clock of a signal is a sequence of logical instants at 
which the signal is computed or assigned new values. Not all signals at the interface are 
computed or assigned input values at every logical instant. A logical instant can be thought of as 
a maximal set of computation activities in reaction to one or more input changes. 
 
This set of activities is maximal in the sense that any other activity would require another value 
to arrive on those inputs which triggered the current set of activities. Also, the computational 
activities in a reaction are partially ordered based on data dependency. If an activity produces 
data that another activity consumes immediately, they will be appropriately temporally ordered. 
However, from outside of the system, one cannot see the intermediate computations or interrupt 
them, until the reaction is completed. So the notion of a logical instant is not related directly to 
Newtonian time, but it denotes a set of activities triggered by one or more triggers, and it extends 
until a reaction is over. The next logical instant starts when another reaction is triggered. 
 
Since not all signals participate in activities in all logical instants because their computation may 
be guarded by Boolean conditions, availability of inputs they react to, etc., the set of logical 
instants for each signal might be different. Also the polychronous model allows us to express 
concurrent computations; thus some of the activities may be concurrent and hence belong to a 
different sequence of reactions. For every signal – the set of logical instants (possibly infinite) 
that it participates in – is its clock. Thus signals may have different clocks; hence the model of 
computation is called polychronous or “multi-clocked”. 
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The signals at the interface therefore may be partitioned into classes and those who always 
participate in activities in the exact same logical instants are said to be synchronous with each 
other. Signals that participate in a subset of logical instants that another signal partakes in are said 
to be subclocks. Signals whose clocks are unrelated evolve asynchronously with each other. So 
one may find some signals always having new inputs arriving on them in the same logical 
instants, some signals have inputs arriving only in a subset of logical instants, and some might 
have inputs arriving in unrelated logical instants. All of these are captured in clock relations.  
   
Definition 14 (Event) Ξ is used to denote the set of all events. ≤ is a preorder on Ξ: e≤f means 
that e occurs before or concurrently with f. ∼ is the equivalence relation based on ≤: e∼f means 
that e and f occur simultaneously hence termed synchronous events.  
   
Definition 15 (Logical Instant or Instant)  Υ is used to denote the quotient of Ξ by ∼ as the set of 
instants. Thus a logical instant is a maximal set of events that are synchronous.  
 
Note that synchronous events may have a data dependency and hence may have a partial order 
inside the instant, different from ≤. This different order serves in the generation of sequential 
code which is not considered in this paper.  
   
Definition 16 (Partial order on Instants) Υ /≤ is the partial order on instants based on Ξ/≤: ∀a, 
b∈ Υ, a ≤ b ⇔ ∃ α ∈ a, β ∈ b| α ≤ β  
 
The above definition lifts the ≤ and the corresponding strict order < to the set of logical instants 
so one can compare the order of happening of some of the logical instants.  The entities of the 
model are signals, defined on instants. A signal is a succession of values, happening at some 
specific instants. This specific succession of instants is the clock of the signal. 

   
Definition 17 (Signal, Epoch and Clock) Let T be a set of values – the type and T⊥=T∪{⊥} its 
extension with a special value meant to represent absence, a signal is a function  Υ → 𝑇⊥  
depending on a set of instants, its epoch.  
 
For a given signal, there exists one maximum set of instants γ⊂ Υ such that γ is a total order in Υ 
and the signal associates a value from T to each instants of γ. Such a set is called the epoch of the 
signal, σ(x) represents the epoch of the signal x. 
 
Let us define the clock of a signal, a characteristic function that tells if a signal x is present or 
absent at any given instant t in Υ. Clock is a function ( Υ → 𝑇⊥ ) → Υ → {𝑡𝑟𝑢𝑒, ⊥ } such that for 
a signal x returns another signal (x ) defined by: x (t) =true if x(t)∈T and x (t)=⊥ if x(t)=⊥  
 
The notation x(t0

x) for the value for signal x at its initial logical instant is used. It is defined as 
such: Tx(t0

x)∈  and ∀𝑡 ∈ Υ, 𝑡 < 𝑡𝑥0 ⇒  𝑥(𝑡) = ⊥ . 
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The notation x(t−1
x ) for the previous value of a signal at a given instant is used. It is defined as 

such: for all t∈ Υ such that x(t)∈T and t=t0
x, yields 𝑡𝑥−1 ∈ Υ such that x(t−1

x )∈T and ∀𝑝 ∈ 𝑌, 𝑡𝑥−1 <
𝑝 < 𝑡⇒  𝑥(𝑝) = ⊥ . 

4.2.1.1.2 The Process and its logical Interpretations 
 
Definition 18 (Dataflow Process) A dataflow process P= (G, I, O) is defined by G, a directed 
graph in which edges are signals and nodes are dataflow actors, I is an inputs set and O is an 
outputs set; I and O are sets of signals. In the future, S will be defined as the set of signals of the 
process P, i.e. the set of edges of the graph G and E the set of epochs of every signal of S.  
Dataflow actors are either sub-processes (sG, I, O), either basic operators. Sub-processes are 
defined by a dataflow graph sG and have ports to access their input and output sets. These are 
called input ports and output ports. 
 
There are four basic operators which also have input and output ports and they are defined as 
follow: 

• A function (r = f( a,..,n) ) calculates a result r from one or more operands a,..,n. The types 
of those signals depend on the function. The result is defined by r(t)=f(a(t),b(t)). 

 
• A delay (r = a $ init n ) stores the current value of a and emits on r the previous stored 

value when a is present. On the first instant of a, the value n is emitted. The result is 
defined by r(t)=a(t−1

a ) when t>t0
a and r(t)=n when t=t0

a. 
 
• A sampler (r = a when b ) transmits the values from a signal a to a signal r but only when 

the sampling signal b is true. The result is defined by r(t)=a(t) when b(t)=true and r(t)=⊥ 
when b(t)≠true. 

 
• A merge (r = a default b) transmits to r the values from the signals a and b whenever they 

are present with a priority to b when both are present. The result is defined by r(t)=r(a) 
when r(a)≠⊥ and r(t)=r(b) when r(a)=⊥.  

 
The signals of the dataflow process connect zero or one output port and zero or one input port of 
any actor. Signals from the inputs set I necessarily connect no output port (undefined signals) 
and signals from the output set O necessarily connect one output port (define signals). Therefore, 
I∩O=∅. 

   
Definition 19 (Epoch system of a Process) 
From a Dataflow Process P, one may construct a Boolean Theory BP where axioms are 
equalities between Boolean formulas. Those formulas, which imply variables that represent 
epochs and Boolean conditions on signals, are defined by the basic dataflows operators as 
described in the second column of Figure 10.  The idea behind this construction is that it can be 
used for a Prime Implicate (PI) minimization. The PI minimization produces a theorem where 
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propositions are Boolean formulas in Conjunctive Normal Form and extract the essential Prime 
Implicates of the formulas.  

   
Definition 20 (Well-clocked Process) A process is said to be well clocked if the Boolean theory 
attached to it contains no contradiction.  
   
Example 5 Counterexample y1 = 1 when x y2 = 1 when not x z = y1 + y2  
by1 = 1 and x=1 by2 = 1 and x=0 bz = by1 = by2 x = [x] ou [-x] [x] and [-x] = 0 

models: (bx and [x])=(bx and [-x]) bx = false 
   

Definition 21 (Dependency Graph of a process) 
A dependency graph is a labeled directive graph where the nodes are signals and the edges 
represent dependencies relations between signals at some sets of instants.  At each instant in a 
dataflow process, the events that are involved are ordered by an order relation: the dependency 
relation: ⇁. This relation means that one event can only happen after one other, for example if 
one signal y is a copy of the signal x, the two synchronous events y(t) and x(t) are connected by 
the relation yx⇁ .  The relation ⇁ defines a graph for each instant. The relation →𝑎 defined 
by ∀𝑥,𝑦 ∈ 𝑆,∀𝑎⊂𝑌, 𝑥 →𝑎 𝑦, iff  ∀𝑡 ∈ 𝑎, 𝑥(𝑡)¬𝑦(𝑡) defines a graph for the whole process. 
 
This graph can be directly constructed from the basic dataflow operators of the process, refering 
to the third column of the table shown in Figure 10. 
 

Dataflow actor  Epoch / Boolean Relations Data Dependencies 
Function σ(a)=σ(b)=σ(r) a→σ(a)r 
r=a ⋆ b ba=bb=br b→σ(b)r 
Buffer σ(a)=σ(r) No dependency 
r=b$ init n ba=br  
Sampler σ(r)=σ(a)∩σ(b=true)  a→σ(r)r 
r=a when b br=baandb[b], bb=b[b]or[−b]  
 b[b]and[−b]=false  
Merge σ(r)=σ(a)∪σ(b) a→σ(a)r 
r=a default b br=baorbb a→σ(b)−σ(a)r 

Figure 10: Formal definitions of Dataflow Actors 
 

4.2.1.2  Clock tree decomposition using Prime Implicate theory 
Given a theory of Boolean formulas that represent the clock relations of a specification, the 
master trigger is a signal whose clock is necessarily true whenever any other term is true. In an 
endochronous process it corresponds to a signal that has the greatest epoch. In a PI minimization, 
the variable that corresponds to a master trigger appears as a prime implicate since it can nullify 
the whole theory.  
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In a weak-hierarchic process, the set of epochs are not totally ordered and there is no master 
trigger. One can find a set of signals for which the sum of the epochs covers the set of instants of 
the process. Again, such a set of signals would appear in a PI minimization. These called partial 
triggers. 

4.2.1.2.1 Finding the Master trigger of a specification 
In [1], the authors show an algorithm to extract the master trigger of a process when it exists and 
prove that the existence of this signal is a necessary condition for sequential implementation of a 
specification. This condition implies that there is a signal that has events in every instant, thus the 
set of instants is totally ordered. It is related to the property of endochrony of a process. 

   
Definition 22 (Master Trigger) Let P be a well-clocked Dataflow Process and υ the set of 
instants of the process. Let x be a signal from I (the input set of P) with σ(x) as its epoch and the 
properties that for each instant t∈υ, t is in σ(x), and there is no s∈υ for which the dependency 
graph of the process has a causal cycle. Then x will be termed the master trigger.  
 
This definition is deduced from the definition of endochrony that states that an endochronous 
process contains a master clock. A process which is endochronous can be sequentially 
implemented, as [1] proved that a process that has a master trigger is endochronous and can be 
sequentially implemented. 

 
Theorem 4 (Existence of Master Trigger) Given a well-clocked Dataflow Process P such that the 
dependency graph of P has no cycles, let BP denote the system of Boolean equations derived from 
the actors. A signal x in I (the input set of P) is a master trigger if and only if its corresponding 
Boolean variable bx in BP has the property that if bx is false, every other variable is false 
(∀by∈BP,bybx).  
 
Proof: In Figure 10, the definition of epochs and Boolean Theory implies that the hypothesis 
σ(y) ⊂ σ(x) and by ⇒ bx are equivalent.  
 
Since the epoch of a master trigger x contains all instants of the process, for any signal y in P, 
then σ(y) ⊂ σ(x). Thus by ⇒ bx. 
 
∃ x ∈ P, ∀ y ∈ P, by ⇒ bx implies, ∃ x ∈ P, ∀ y ∈ P, σ(y) ⊂ σ(x). Under the condition of no-
dependencies, it also implies that x is a master trigger of P.  

 
Theorem 4 can be exploited in two ways. First if a master trigger exists, a PI minimization of the 
Boolean equations would detect this master trigger as a positive literal among the Prime 
Implicates. Second, if a Prime Implicate is found and if the other criteria are met (no cycles in 
dependency graph and well-clocked), the process can be sequentially implemented. 
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4.2.1.2.2 Finding sets of partial triggers of a specification 
Weakly-hierarchic processes were defined in [49]. These are an extension of endochronous 
processes. They do not aim to be implemented as sequential pieces of code but instead they can 
be implemented as a set of sequential threads. The endochronous processes are a special case 
where there is only one thread. From the definition, a weakly-hierarchic process is a composition 
of endochronous subprocesses. Thus, when an endochronous process has a master trigger, a 
weakly-hierarchic process has a set of partial triggers, each one having the greatest epoch among 
its own subset of signals.  
 
Informally, the search is for a set of signals that act like master triggers of their own sub-
processes (partition of process).  

   
Definition 23 (Set of partial triggers) A set of partial triggers is a set of signals such that when 
one of the partial triggers is absent, any of the others can be present but when all partial triggers 
are absent, all signals of the system are absent. 
Let P be a Dataflow Process and υ the set of instants of the process. Let {x1,..xn} be a set of 
signals from I with σ(x1),..,σ(xn)  as their epoch and the properties that  
 

• for each pair xi,xj∈{x1,..xn}, σ(xi)⊂σ(xj),  
 
• for each signal y∈P, there is at least one trigger x∈{x1,..xn} such that σ(x)⊃σ(y).  
 
• there is no s∈υ for which the dependency graph of the process has a causal cycle.  
 

Then {x1,..xn} will be termed the set of partial triggers for P.  
 

Theorem 5 (Weak Hierarchy of a process) A process that has a set of partial trigger is weakly 
hierarchic.  
 
Proof: The authors of [53] define a composition of endochronous processes that is acyclic and 
well clocked to be weakly hierarchic. 
Let P be a Dataflow Process which has a set of Partial Triggers. 
 
For each signal y ∈ P, there is at least one trigger x ∈ {x1,..xn} such that σ(x) ⊃ σ(y). This 
describes a partition of the process in subprocesses. For each trigger xi, there is a set of signals 
that form a subprocess Pi. The dependency graph of P has no cycle and the dependency graph of 
Pi is a subgraph of it. Pi is acyclic. Pi has a master trigger xi; it is endochronous.  P is by definition 
acyclic and well-clocked. 
 
Theorem 6 (Discrimination of a set of Partial Trigger) Given a well-clocked Dataflow Process P 
such that the dependency graph of P has no cycle, let BP denote the system of Boolean equations 
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derived from the actors. A set of signals S={x1..xn} is a set of partial triggers if and only if 
∀ y∈ P, ∃ x∈ S such that y=0x=0 and there is no pair x1,x2∈S such that bx1=0bx2=0.  
 
Proof: Like in theorem 4, this is the translation of the definition through the equivalency of σ(y) 
⊂ σ(x) and by ⇒ bx.  

 
Theorem 6 can be exploited the same way as theorem 4, i.e. a PI minimization of the Boolean 
Theory would detect a set of partial triggers and prove the implementability. 

4.2.1.2.3 Scheduling the threads 
Scheduling a thread involves strictly ordering events and refining two partial orders. One is based 
on definitions from the epoch system of the process and the other from the data dependency 
graph. The first order is extracted from the definitions of epochs in a structure called the 
Followers Set. The second order is used to reinforce the order between events of the same epoch 
based on the dependency graph.  
 
Each trigger is the head of one of the main threads; this means each one of the partial triggers 
generates one thread. The event that happens at the epoch of the trigger has to happen at each 
instant. This set of events can be tied by data dependencies and the graph can be used to schedule 
them. For example, the simple process x=y has only two events x(t) and y(t) at the instant t. The 
epoch calculus and a trivial PI minimization tell us that x is the master trigger, and x and y have 
the same epoch. Then the graph dependency tells us that for any instant of σ(x), there is a 
dependency x→y. The thread will therefore begin with the event x(t) by reading the value of the 
input x and then continue with the event y(t) by attributing the value to the output y and emitting 
it. More likely, the thread has to manage several different epochs; those epochs are all subsets of 
the epoch of the trigger and can be ordered in a structure that will be called the Follower Set.  

   
Definition 24 (Followers Set) The Follower set of a trigger is a sequence of sets of epochs with 
the following property: in a Boolean Theory BP of a process P, α belongs to the nth element of the 
Followers Set of a trigger x, if there is a formula in BP that defines α with only epochs of lesser 
elements in this followers set.  
 
The first element of a Followers Set contains the epoch of the trigger. This is the first level of the 
thread. At this level, all the signals that share this epoch, ‘the first element of the followers set’, 
are known to be present and the epochs of the second level of the Followers Set can be evaluated.  

 
Theorem 7 (Construction of the Follower set of an Endochronous Dataflow Process) The 
construction of a follower set is also based on a Prime Implicate minimization.  
 
The follower set of the master trigger xi is obtained by searching the Prime Implicant of 
successive boolean equations system BM', BM'', .. in which the previous elements are set to true.  
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The first element of this follower set, FS1 is xi, PI of BM. The second element FS2 is the set of PI of 
BM'=BM∪(∀x∈FS1,x=1), the third element is the set of PI of BM''=BM'∪(∀x∈FS2,x=1) and so on.  

4.2.1.3  Shared Epoch 
Communication in a multithreaded code generation requires synchronizations. In polychronous 
specifications, the synchronization is materialized by shared epochs, i.e. epochs that are subset of 
several roots. In a multithreaded implementation, the use of a synchronization barrier is needed to 
synchronize the shared epochs in order to protect the signals that are used in multiple threads. 

   
Definition 25 (Shared Epoch) 
Shared epochs in a weakly hierarchic specification are epochs of signals that can be accessed by 
several threads or calculations that use signals from several threads. Because each thread has its 
own main epoch and because a shared epoch is a subset of those epochs, it acts as a recurrent 
meeting between the threads. In an asynchronous implementation, this is materialized by a 
synchronization barrier. A variable that is present within a shared epoch is shared between the 
different threads that synchronize at this epoch. In particular, it can be defined with data from 
those threads.  
 
The epoch of a shared variable is defined in the epoch of each thread that accesses it, and thus it 
should belong to the follower sets of the partial triggers of those threads. On the other hand, the 
algorithm described above rejects the shared epoch from their follower sets because when only 
one root is set to be present, shared epochs that belong to several partial triggers are necessarily 
absent. The basic detection of shared epochs requires building follower sets for each combination 
of roots, which is a waste because not all combinations own a shared variable. Use of a finer 
detection involving direct identification of the shared epochs and a generation of their follower 
sets is more efficient.  

   
Definition 26 (Shared epochs) Shared epochs are epochs that can be present only if at least two 
partial triggers are present.  
Because they synchronize several hierarchies, shared epochs have one definition in each of those 
hierarchies. 
Property 1 (Identifications of shared epochs) Consider shared epochs, clocks of signals 
defined by least two equations that individually appear in different follower sets.  
 
In practice, for each epoch defined by several equations, the root of each individual equation is 
extracted. If the partial triggers are different, the equations define a shared epoch if the roots are 
identical; the equations define a clock constraint in one of the follower sets, which may 
compromise the code generation. 
 
Once shared epochs have been identified, it is possible to add in each concerned follower set a 
representative of this epoch and mark it as a synchronization point. One can then use each 
follower set to generate its own sequential code and place barrier synchronization at the marked 
epoch. This will create a set of threads that synchronize at each instant of the shared epoch.  
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4.2.1.4 Distribution of events into threads 
Theorem 8 (Construction of the Follower sets of a Weakly hierarchical Dataflow Process) The 
construction of a follower set for a weakly hierarchic process is close to the previous one except 
that each partial trigger and each shared variable has its own follower set. The follower set of 
the partial trigger xi is obtained by searching the Prime Implicant of successive boolean 
equations system BM', BM'', .. in which the previous element is set to true and other roots are set 
to false. 
 
The first element of this follower set, FS1 is xi, PI of BM∪(∀x∈roots(M),x≠x1x=0)
The second element FS2 is the set of PI of BM'=BM∪(∀x∈FS1,x=1), the third element is the set of 
PI of BM''=BM'∪(∀x∈FS2,x=1) and so on.  
 
The events of the process have to be distributed into several threads with respect to the different 
orders. The threads are synchronized with barrier, which means that the synchronization points 
have to be a minimum. The starting points of the threads are the partial triggers and the shared 
variables. Partial triggers are independent, they are not clock-related and the events at those 
epochs are not data-dependent with each other. The most efficient implementation is to have the 
set of events of each partial trigger in the same thread.  Shared epochs, which are sub-clocks of 
several partial triggers, have their own threads and are synchronized with the main thread via a 
synchronization barrier. 
 
Theorem 9 ensures that each event of the process belongs to exactly one thread. 
 
Lemma 2 All events belong to one epoch that is a subclock of a master trigger. 
If one event belongs to one epoch that is a subclock of several master triggers, this epoch is also 
a subclock of a shared epoch.  

 
Theorem 9 (Placement of event in threads) 
Let’s suppose that M is a weakly hierarchical process with {Ci} its roots and {Csi} its shared 
epochs, define Ti as the thread attached to the partial trigger Ci and Tsi the thread attached to 
the shared variable Csi. Following the data dependency graph, every event that has no incoming 
dependency and belongs to the subclock of only one master trigger Ci are put in Ti. Events that 
have no incoming dependency and belong to a shared epoch Csi are put in Tsi. Events that have 
dependencies from only one thread are put in this same thread. Events that have dependencies 
from two threads, of two triggers Ci and Cj, must belong to one shared epoch Csi and are put in 
Tsi, behind a synchronization barrier. Events that have dependencies from two threads, one of 
trigger Ci and one of shared Csi, are put in the thread of the trigger, Ti, behind a 
synchronization barrier. 

4.2.1.5 Algorithm 
The code synthesis algorithm for Prime Implicate based sequential code generation is provided in 
Figure 11.  
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Types 
 Epoch 
 Epoch List 
 Event      % a basic operation like read, write of IO or affectation of a variable 
 Node      % a pair of one epoch and one event 
 Node List   
 Process    % contains Nodes 
 BooleanTheory % Boolean theory of a process, contains Epochs and relations between 
them 
 DepGraph   % Dependency graph of a process, contains Nodes and relations between them 
 Code      % A basic block of code 
 Code List  % A Thread 
  
Methods 
 % returns the list of events at the epoch of epl 
 Node List nodeAt(Epoch epl, Process p);    
  
 % returns the list of nodes of G that have no precedent 
 Node List headsOfGraph(DepGraph& pointer_g);   
 
 % returns the list of PI of a BooleanTheory 
 Epoch List primeImplicant(BooleanTheory b);   
 
 % returns a new Boolean theory derived from b where e is set to True 
 BooleanTheory setToOne(BooleanTheory b, Epoch List epl);  
 
 % add items at the end of list        
    
 x List addToList(x List list, x item);    
 
 % remove e from g and link dependencies 
 removefromGraph(depGraph& pointer_g, Event e);   
 
 % returns the block of code of a node (if epoch then event) 
 Code code(Node n);        
 
codeGen(Process& pointer_p, Code List& pointer_t, DepGraph& pointer_g, BooleanTheory b) 
{ 
 Epoch List epl = primeImplicant(b) 
 Node List nl = intersection(nodeAt(epl,p),headsOfGraph(g)) 
 while(nl != null) 
  foreach(Node n in nl) 
  { 
    addToList(t, code(n)) 
    remove(g,n) 
    nl = intersection(nodeAt(epl,p),headsOfGraph(g)) 
  } 
 BooleanTheory b2 = setToOne(b,epl) 
 codeGen(p, t, g, b2) 
  
 nl = intersection(nodeAt(epl,p),headsOfGraph(g)) 
 while(nl != null) 
  foreach(Node n in nl) 
  { 
    addToList(t, code(n)) 
    remove(g,n) 
    nl = intersection(nodeAt(epl,p),headsOfGraph(g)) 
  } 
} 

Figure 11: Recursive Algorithm for Prime Implicate based sequential code generation 
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Example 6 Code generation of a weakly endochronous process. Here is an extract of generated 
multi-threaded code. The code contains three different threads: thread one and two are the main 
concurrent process of the program, thread_3 is the common subprocess, with the shared epoch. 
Synchronization is obtained with two barriers that protect the critical variable ‘z’.   
 

#include <pthread.h> 
 
pthread_barrier_t barr_1; 
pthread_barrier_t barr_2; 
 
int main() 
{ 
    pthread_t thr_1; 
    pthread_t thr_2; 
    pthread_t thr_3; 
 
    // Barrier initialization 
    if(pthread_barrier_init(&barr_1, NULL, THREADS)) 
    { 
      printf("Could not create barrier 1\n"); 
      return -1; 
    } 
    if(pthread_barrier_init(&barr_2, NULL, THREADS)) 
    { 
      printf("Could not create barrier 2\n"); 
      return -1; 
    } 
     
    // threads creation 
    if(pthread_create(&thr_1, NULL, &thread_1, NULL)) 
    { 
      printf("Could not create thread 1\n"); 
      return -1; 
    } 
    if(pthread_create(&thr_2, NULL, &thread_2, NULL)) 
    { 
      printf("Could not create thread 2\n"); 
      return -1; 
    } 
     if(pthread_create(&thr_3, NULL, &thread_3, NULL)) 
    { 
      printf("Could not create thread 3\n"); 
      return -1; 
    } 
} 
 
void * thread_1() 
{ 
    boolean code; 
    EXTRACT_1_initialize(); 
    while(code) 
    { 
      code = EXTRACT_1_step(); 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
41 

    } 
    EXTRACT_1_Close(); 
} 
 
boolean EXTRACT_1_step() 
{ 
    if (!r_adder_a(&a)) return FALSE; 
    x = a; 
    w_adder_x(x); 
     
    C_CLK_101 = (C_a ? (a == 0) : FALSE); 
 
  ` if (C_CLK_101)  
    { 
      pthread_barrier_wait(barr_1); 
      pthread_barrier_wait(barr_2); 
    } 
} 
 
void * thread_2() 
{ 
    boolean code; 
    EXTRACT_2_initialize(); 
    while(code) 
      { 
        code = EXTRACT_2_step(); 
    } 
    EXTRACT_2_Close(); 
} 
 
boolean EXTRACT_2_step() 
{ 
    if (!r_adder_b(&b)) return FALSE; 
    y = b; 
    w_adder_y(y); 
     
    C_z = b == 0; 
    if (C_z) 
    { 
      pthread_barrier_wait(barr_1); 
      pthread_barrier_wait(barr_2); 
    }  
} 
 
void * thread_3() 
{ 
    while(code) 
    { 
        code = EXTRACT_3_step(); 
    } 
} 
 
boolean EXTRACT_3_step() 
{ 
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    pthread_barrier_wait(barr_1); 
    z = x + y; 
    w_adder_z(z); 
    pthread_barrier_wait(barr_2); 
} 

 

4.2.1.6  Non blockage of weak-hierarchic composition 
Given the definition of weak hierarchy, a weakly hierarchic composition has to be non-blocking. 
This means that the components that are composed must not contradict in signal definitions or 
add dependency cycles. This can be treated with a strong but sufficient property. 

 
Theorem 10 (Strong condition for non blocking compositions of Hierarchies) A composition of 
processes is non-blocking if for all set of k processes which share j variables, j<k.  
 
Proof: It is shown that both conditions of a blocking composition falsifies the theorem. 
 
Let us suppose that a composition of processes has a cycle. There exists a minimal set of k 
processes that supports the cycle k > 1 because each process is acyclic. This cycle can be 
decomposed in j elemental dependencies with j ≥ k because each process supports a part of the 
cycle, and these dependencies involve exactly j variables (suppose that a variable can appear only 
once because dependency is a transitive relation and any loop can be reduced to a loop in which 
the variables are all different). The set of k processes shares j variables and j < k. 
 
Proving well-formed hierarchy has a similar approach. Suppose that a composition of processes 
is ill-formed. This means that at least two variables x, y are exclusive and both super-clock of a 
third one z. x and y being exclusive means that there exists a w that is a super-clock of x and y. 
There are now four relations of inclusions involving four variables. Since each process is well 
formed, it means that those relations come from several processes (two, three or four). In the 
fewest possible cases, the number of shared variables is always at least equal to the number of 
processes. 

 
Since the shared epochs are clearly identified by their equations, this property can be checked 
directly during code generation. 

4.2.2 Investigate if SAT Modulo Theory (SMT) techniques will refine 
behavioral Types 

4.2.2.1 Problems 
1. Large scale examples will take lot of time if one uses entire MRICDF/SIGNAL 

specifications for verification of any property. As an example, causal loop detection was 
checked.  
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2. Identification of safe-operating area for a faulty system.  

4.2.2.2 Investigated Methods 
1. SMT Approach. 

 
2. Polyhedra Approach. 

4.2.2.3 Anticipated problems and future work 
1. Investigated techniques will approximate any floating point data as integer data to the user 

defined precision. No open-source floating point polyhedral libraries exist as of now. 
Yices internally converts floating point to integer data. So high precision analysis might be 
problematic.  
 

2. Investigated techniques will not work if there are non-linear constraints. Currently a non-
linear constraint solver from MIT is being considered. No results as of now.  

4.2.2.4 Extended Report: Investigate if SAT Modulo Theory (SMT) or other decision 
making techniques will refine behavioral Types 
In Section 4.1.2 it was shown how to extract behavioral type information from the MRICDF 
models. After extraction of this information various kinds of analyses need to be performed such 
as causal loop detection, race condition check, and verification of other safety properties to 
ensure that the composition of the modules is compatible. The effort investigated the use of 
various decision-making tools to check these properties including SAT Modulo Theory (SMT), 
solvers, and later on Polyhedra libraries. An explanation of each work with their advantages and 
limitations is captured below. 

4.2.2.5 SMT based safety property checking 
This section shows how one can use SMT solvers for checking a particular safety property – 
causal loop detection. The approach is generic and can be used to verify most of the properties. In 
one of the earlier works [10], causal loop detection was done by generating SMT equations for 
the entire MRICDF model and this set of equations was given as an instance for the SMT solver. 
The disadvantage of [10] is that for a large scale example, the SMT instance will become huge 
and can lead to long running times – sometimes never ending. In this work, the first step is to 
mine the specifications for possible causal loops. The next step is to express the clock constraints 
of the dependencies as SMT equations and check if all the equations can be true at same time or 
not by evaluating the SMT instance. If the SMT instance evaluates to true, then there exists a 
causal loop, otherwise no. 
 
An example will now illustrate this work. For the reason of expressiveness, Signal and 
Polychrony are used instead of MRICDF and EmCodeSyn. Consider the Signal code of Listing 1: 
 
 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
44 

 
 

Listing 1: Constructive Causal Loop 
process causal -smt = 
(? integer initial , step 1, intMin ; 
! integer min , avg , max; 
) 
(| initial ^= step 1 ^= intMin ; 
|min := initial when intMin <5 default avg - step 1 
|avg := min+ step 1 when intMin =10 default max - step 1 
|max := avg + step 1 when intMin >10 default initial 
|); 

 
The code is compiled using Polychrony to check for the presence of possible causal loops. From 
the code in Listing 1, it is observed that when isMin is true, then avg depends on max, and max 
depends on avg causing a true causal loop. Similarly when isMin is false, then avg depends on 
min, and min depends on avg causing another true causal loop. Once the possible causal loops 
have been identified, the information regarding clock constraints is mined leading to the potential 
causal loops. After mining the clock relations are encoded as SMT equations and a SMT instance 
is constructed and tested for satisfiability. The clock relations are shown in Listing 2. 
 

Listing 2: Clock relations 
% Loop 1 
(|{ avg --> max } when C_CLK _0 
|{ max --> avg} when C_ CLK _1 
|) 
% Loop 2 
(|{ min --> avg } when C_CLK _2 
|{ avg --> min} when C_ CLK _3 
|) 
where , C CLK 0 := :(intMin = 10), C CLK 1 := intMin > 10, 

C CLK 2 := :(intMin < 5) and C CLK 3 := (intMin = 10) 
 
Note that there are two sets of clock relations showing two possible true causal loops. 
 
Any SMT constraint solver enriched with integer theories can be used. The latest YICES SMT 
solver [44] has been used as the constraint solver in this work. Translating the above clock 
relations as YICES input derives the equations in Listing 3. 
 

Listing 3: SMT equations for Loop 1 
;; Loop 1 
( define intMin :: int) 
( assert (and (not (= intMin 10)) (> intMin 10) ) ) 
( check ) 
 
Result :- sat (= intMin 11) 
 
;; Loop 2 
( define intMin :: int) 
( assert (and (not (< intMin 5)) (= intMin 10) ) ) 
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( check ) 
 
Result :- sat (= intMin 10) 

 
Invoking YICES on these equations will give a SAT result as explained earlier. Also, YICES 
provides a counter example (intMin=11 & intMin=10) where the constraint is satisfied which 
matches with our earlier interpretation. Hence there exist true causal loops in the specification 
shown in Listing 1 and one possible way they can be formed is when intMin=11 & intMin=10. If 
YICES had given an UNSAT result, then one would conclude that the property is not satisfied 
and hence it is a false causal loop. Similarly any safety property can be expressed as an SMT 
instance and verified. 

4.2.2.5.1 Limitations of this approach 
Safety property verification such as causal loop detection is not a trivial problem. Given a data 
dependency loop, the complexity of checking if it is truly causal or not is at least NP-hard. If all 
inputs are Boolean signals, and the dependencies can be expressed as Boolean functions using 
ANDs and ORs and NOTs, then the problem would be the same as solving a SAT instance, 
which is NP-Complete. However, if the dependencies are able to be expressed as arbitrary 
functions over integers or reals or other complex data types, the problem is undecidable. This 
shows that any method used in verification must be based on heuristics and is likely not 
complete. One must strive for as close to a complete a solution as possible, while not 
compromising on the soundness of the solution. This is what has been done in this work. Another 
limitation of this work is that only non-floating point and linear constraints are handled. This 
results from YICES limitations, and is not a result of the approach taken here. Lastly, another 
shortcoming of this work is that if a property fails, the tool currently outputs only one of the 
many possible scenarios where the property will fail and not all of the scenarios where the 
property fails. 

4.2.2.6 Polyhedra based safety property checking 
This work tries to preserve the advantages of the SMT based approach and addresses minimizing 
its disadvantages. If the synthesized software has to interact with a physical environment, often 
additional range constraints on various inputs as well as outputs are provided. Analyzing the 
safety of execution often leads to analysis of reachability, invariants, and cyclic dependencies 
which may be affected by such range constraints. As explained in the last paragraph, while 
analyzing a specification for a safety property, even if it violates an invariant property, or shows 
cyclic dependency – even in a very limited area of its reachable state space - it will be rejected. 
For such specifications, instead of rejecting the specification outright, the synthesis tool should 
guide the user by showing the exact range of the input values (or equational relationships 
between the inputs as appropriate) by directing the resulting program to areas of the state space in 
violation. This is exactly the problem addressed in this section. To make decisions with range 
constraints, Polyhedral libraries are used as they can take affine relations as constraints. The 
example below will illustrate the problem being addressed by the work of this section.   Consider 
the example shown in Listing 4. 
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Listing 4: Causal Loop Example 
process AC_ DISPLAY = (? integer minT , curT , maxT ; 
! integer disp _coldT , disp _hotT , disp _ normT ) 
(| minT ^= curT ^= maxT 
| disp _ coldT := minT when curT <70 default curT 
| disp _ normT := ( disp _ coldT +5) when curT =70 default 
( disp _hotT -5) 
| disp _ hotT := ( disp _ normT +5) when curT >80 default maxT 
|); 

 
A Boolean abstraction based check would replace each predicate by a Boolean variable taking 
arbitrary values, and will not consider the relationship between the predicates in their numerical 
domain. As a result, a causal dependency loop will be detected by such analysis because of the 
interdependency between disp_normT and Tdisp_hot . However, if the abstraction is cognizant of 
a theory of integers with ordering relations, then it would lower the Boolean abstraction to a 
model that considers intervals with ordering. On this model, one could prove that when curT>80, 
only then would such a causal dependency loop exist. Obviously, if this happens, the system will 
behave non-deterministically or will deadlock. If this information is explicitly presented to the 
user upon completion of the analysis, and the user can guarantee an additional input constraint, 
70≤curT≤80, then generating code from this specification is completely legitimate, since the 
program will not display any deadlock behavior. In addition, if one wants to ensure safety, one 
could produce a wrapper that would intercept all inputs curT and check against this constraint, 
and filter out any occurrence of input values that violate the user guaranteed constraints. 
However, if the user can guarantee only 70≤curT≤90 the system will exhibit causal behavior 
when 80<curT≤90. But the system has a safe operating area, 70≤curT≤80. One could still apply a 
wrapper to prevent the system from moving outside its safe operating area, if it makes sense for 
the application. 
 
This research proposes a polyhedral model based causality analysis technique which can accept 
Boolean, integer and rational input constraints and checks for violation of safety properties (e.g., 
existence of causal loops) in the constrained system. Based on polyhedral analysis of the 
constraints and specifications, a technique to identify the safe operating area of the system in 
terms of the bounds on the input and other linear constraints is also proposed. In the case of 
multiple safe operating areas, this technique lists all of them. Additionally, a safe code synthesis 
technique is proposed by adding wrappers to ensure that the resulting system does not behave 
non-deterministically or deadlock even when the input constraints are accidentally violated. 
 
The proposed solution is illustrated with the example below. Consider the signal program shown 
in Listing 5, which is an extension of the program shown in Listing 4. 
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Listing 5: True Causal Loop 
process AC_ DISPLAY = (? integer minT , curT , maxT , curP , curK  
! integer disp _coldT , disp _hotT , disp _ normalT ) 
(| minT ^= curT ^= maxT ^= curP ^= curK 
% Conditions % 
| cond _1 := (( curT >= 2) and ( curT <= 18)) 
| cond _2 := (( curP >= 3) and ( curP <= 21)) 
| cond _3 := (( curK >= 25) and ( curK <= 35)) 
| cond _4 := (curT - curP >= -10) 
| cond _5 := (( curT + curP >= 11) and ( curT + curP <= 33)) 
% Output Computation % 
| disp _ coldT := minT when (curT < minT ) default curT 
| disp _ normalT := ( disp _ coldT +10) when 
(not( cond _1 and cond _2 and cond _3)) 
default ( disp _hotT -10) 
| disp _ hotT := ( disp _ normalT +10) when ( cond _4 and cond _5) 
default maxT 
|) 
where 
boolean cond _1, cond _2, cond _3, cond _4, cond _5; 
end; 
 

When a Boolean abstraction is analyzed, it identifies the possibility of a causal loop because of 
the interdependency between disp_hotT and Tdisp_normal  as shown in Listing 6.  
 

Listing 6: Possible Causal Loop 
(| { disp _ hotT --> disp _ normalT } when C_ CLK _31 
| { disp _ normalT --> disp _ hotT } when C_CLK _23 
|) 
where , C_ CLK _31 = cond _4 and cond _5 
C_CLK _23 = cond _1 and cond _2 and cond _3 

 
One can invoke an SMT solver to check for nullity of clock constraints (C_CLK_31∧C_CLK_23) 
on the path of the apparent loop. This is done by extracting the clock constraints and generating 
the predicates for the Yices SMT solver as shown in Listing 7.  
 

Listing 7: Assertion in SMT solver and Solution 
( define curT :: int) ( define curP :: int) ( define curK :: int) 
( assert (and (<= curT 18) (<= curP 21) (<= curK 35) 
(>= curT 2) (>= curP 3) (>= curK 25) (<= (+ curT curP ) 33) 
(>= (- curT curP ) -10) (>= (+ curT curP ) 11) ) ) 
( check ) 
 
Result : SAT , Counter example : curT =8, curP =3, curK =25 % 

 
Invoking the Yices solver will decide this condition as satisfiable (which indicates the existence 
of true causal loops) and it outputs one counter example to show a case where a causal loop may 
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create a deadlock. If input constraints are included, an SMT solver will not be able to provide the 
safe operating region of the input space. 

4.2.2.6.1 Constraint Extraction and Transformation for Polyhedral analysis 
Given the input constraints shown in column 1 of Figure 12 for the SIGNAL program shown in 
Listing 4, the clock constraints for a possible causal loop are transformed to a system of affine 
inequalities and equations and are shown in column 2 of Figure 12. There exists an implicit 
logical intersection among all the constraints within each column of Figure 12. The constraints in 
Figure 12 need to be transformed into affine form to use the PolyLib library [51]. The system of 
translated affine inequalities is shown in Figure 13. This system is further abstracted to matrices 
before using Polylib APIs. 
 
 

 
Figure 12: Input and True Causual Loop Constraints 

 
 

 
Figure 13: Inequalities and Equations from Input and Loop Constraints 

 
 
Figure 14 shows the plot of polyhedra representing both input constraint and true causal loop 
constraints. From the multiple views we see that there exists a region of intersection between the 
two polyhedra, which indicates the existence of true causal loops with the current input 
constraints. 
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Figure 14: (Top) 3D-plot (multiple views) of Polyhedra representing Input and Loop Constraints. (Bottom) 3D 

plots of I ∩ L and I - L 

 

4.2.2.6.2 Polyhedral Analysis 
To obtain the bounds of the safe operating region and the region where the true causal loop 
exists, one applies two polyhedral operations from the PolyLib library.  
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i DomainIntersection(I,L): This operation returns the intersection of two polyhedral 
domains. This is used to compute I∩L.  

 
ii DomainDifference(I,L): This operation returns a new polyhedral domain which is the 

difference, I−L.  
 

Both of these operations may return many sub-polyhedra instead of one single resultant 
polyhedron. The union of all of the sub-polyhedra will yield the resultant polyhedron. Figure 14 
also shows the plots for both I∩L and I−L respectively. Note that the plot of I−L actually is the 
union of six different polyhedra. 

4.2.2.6.3 Limitation of Polyhedral libraries 
Almost all of the existing polyhedral libraries including the one used here, PolyLib, have 
restrictions in that they can only accept integer constraints. In the proposed technique, all rational 
constraints are multiplied by the least common multiple to obtain integers, and any floating point 
numbers are truncated based on the precision specified by the user. The truncated floating point 
constraint is then multiplied by a suitable number such that it becomes an integer. 

4.2.2.6.4 Safe code synthesis using Wrapper 
From the result of polyhedral analysis, the bounds on inputs for the safe operating region are 
obtained and must be checked before actually passing them to the process, so that the process 
remains in safe trajectories. Wrapper code is inserted which prevents any inputs violating the 
conditions of safety from being passed forward. The user of the synthesis tool is given the option 
to choose if such implementation makes sense in the application domain. Listing 8 shows the 
wrapped code for the SIGNAL program shown in Listing 4. 
 

Listing 8: Signal program of Listing 7 with wrappers 
process AC_ DISPLAY = (? integer minT , curT , maxT ; 
! integer disp _coldT , disp _hotT , disp _ normT ) 
(| minT ^= curT ^= maxT ^= cond _1 
| cond _1 := (( curT >= 70) and ( curT <= 80)) 
| disp _ coldT := ( minT when curT <70 default curT ) when cond _1 
default DEFAULT _ VALUE 
| disp _ normT := ( ( disp _ coldT +5) when curT =70 default 
( disp _hotT -5) ) when cond _1 
default DEFAULT _ VALUE 
| disp _ hotT := (( disp _ normT +5) when curT >80 default maxT ) 
when cond _1 default DEFAULT _ VALUE 
|) 
where 
bool cond _1; 
end; 
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4.3  Tool development work 
Developing large case studies using EmCodeSyn is difficult because of current GUI limitations of 
the EmCodeSyn tool. Below are some of the changes that have been implemented to mitigate this 
problem. 

4.3.1  EmCodeSyn improvement 
Current status: The actor shapes have been changed, so that now each actor has a different shape. 
The earlier zoom feature used to zoom in/out of the entire canvas, but changes have now been 
implemented to the GUI such that each actor can be individually zoomed in or out. There was a 
problem with the canvas and scroll bars for large MRICDF models which has now been fixed 
allowing the scrollbar to adapt dynamically. Originally all the lines were 1-D lines and because of 
this the models were not presentable as the lines were allowed to pass over another actor causing 
a messy display. An automated graph layout mechanism has been implemented which performs 
orthogonal layout of MRICDF models based on the Open Graph Drawing Framework 
(OGDF)[54]. It has been completely integrated into EmCodeSyn for orthogonal layout and a 
demonstration of the clean display of crossing lines has been performed. 

4.3.1.1  Simcdf: Simulink models to MRICDF import 
Current Status: The Simcdf tool can generate MRICDF XML files from multi-layer Simulink 
MDL files. Currently all of the blocks in MDL files are considered as function actors. On the 
other hand writing C function definitions for most of Simulink blocks for code generation has 
been completed. Integration of Simdcf to EmCodeSyn is complete and a demonstration has been 
performed. C code generation from the Simulink models can now be done in EmCodeSyn. 
 
Further improvements: The current Simcdf tool accepts a subset of Simulink models. It is 
planned to extend the Simcdf tool to also accept integrators, differentiators, and other timing 
sensitive blocks. 

4.3.1.2  Sigcdf: SIGNAL to MRICDF import 
Future work: SIGNAL examples can be leveraged not only in the distribution but to build 
MRICDF models from them. This is useful in two ways. First is for verification of the 
EmCodeSyn compiler implementation and second is to compare the quality of code generated by 
Polychrony as compared to EmCodeSyn. Apart from these is the added advantage of ready-made 
MRICDF models, although this will require the ability to parse the entire SIGNAL grammar. 

4.3.2  CTS Tool 
Section 4.1.3 describes the C to SIGNAL conversion tool. 

4.4 Implementation of Behavioral type interference algorithm 
Section 4.1.2 describes the behavioral type extraction algorithm. 
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4.5 Development of Prime Implicate extraction algorithms 

4.5.1 Introduction 
The terminology used here for logical formulas is standard: An atom is a propositional variable, a 
literal is an atom or the negation of an atom, and a clause is a disjunction of literals. An implicate 
of a logical formula is a clause entailed by the formula. Thus a clause C is an implicate of a 
logical formula F if C is satisfied by every interpretation that satisfies F. An implicate is a prime 
implicate, if it is not a tautology and if no proper subset is an implicate. Prime implicates are 
useful in the analysis of Boolean formulas (logical formulas) derived from polychronous 
(MRICDF) specifications, and the primary goal of the State University of New York at Albany 
team is the development of effective techniques and systems for computing the prime implicates 
of those systems. 
 
Techniques that scale are crucial because real systems will generate large formulas, and the 
general problem of finding all prime implicates of a logical formula is NP-hard. The project has 
produced advances that enabled significant speedups, even for the general prime implicate 
problem, and especially for Boolean theories arising from MRICDF specifications. 

4.5.2 Computational Advances 

4.5.2.1 Leaving the Original Algorithm 
In [34], a branch-by-branch analysis leads to the algorithm introduced there. In [35], a set 
oriented characterization is not only more intuitive but leads to a more efficient version of the 
algorithm. The added efficiency stems from three improvements. 
 

• First, many subsumption checks required by the original algorithm are revealed by the set 
oriented analysis to be unnecessary and are avoided in the improved algorithm. 

 
• A second improvement results from avoiding tries in which branches have distinguishing 

marks, necessarily stored at the ends. Checking the marks entails traversing the branch and 
is almost as expensive as a subsumption check. Instead, identically typed branches are kept 
in single tries. 

 
• Realizing clause-based operations recursively on entire sets, represented as tries, provides a 

third improvement. Experiments indicate that the trie-based operations outperform branch-
by-branch operations, and that the advantage increases with the size of the trie. 

 
The difference in performance of the newer algorithm over the original is quite dramatic: 
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Figure 15: Old vs New pi-trie algorithm 

  
Figure 15 compares (in log scale) the pi-trie algorithm from [34] to the updated version in [35], 
using the recursive, trie-based and operators. The input for both algorithms is a 15-variable 3-
CNF with varying numbers of clauses and the runtimes averaged over 20 trials. 

4.5.2.2 Filters and Search Space Reduction  

 
Figure 16: pi-trie Filtering 

  
In synthesis of polychronus systems, prime implicates that are positive, containing only positive 
literals, and short, especially unit prime implicates, are of special interest. Such prime implicates 
can always be selected from the entire set of prime implicates, but generating only the prime 
implicates of interest is not only preferable, but much more efficient [35, 36].  Figure 16 has the 
results of an experiment with a 13-variable 3-CNF formula. Two filters are used: the first is “max 
length 2,” and the second excludes clauses containing any of the literals v3, v5, v6, or ¬v7. The 
algorithm’s singular design removes clauses not satisfying the specified filter from the 
computation itself, not just from the results, thus reducing the entire search space. 
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4.5.2.3  Decomposition 
The goal of decomposition is to reduce a single computation on a formula to be independent 
computations on subformulas. For prime implicates, as well as for many other problems, this can 
only be accomplished if the subformulas are variable-disjoint. 
 
The pi-trie algorithm creates conjoined subformulas via variable substitution. Decomposition 
analysis can enable a choice of variable orderings for the algorithm, so that conjoined variable 
disjoint subformulas (of roughly equal size) result. 
 
The system developed here is equipped with a preprocessing component that selects a variable 
ordering for the algorithm that induces a favorable decomposition. Variable disjoint subformulas 
are detected and analyzed independently, thus reducing the computational load of the system. 
 
Each of the seven examples listed in Figure 17 was run in eight different trials. In the first four 
trials, the variables were reordered in a way that favors decomposition, while no reordering was 
done in trials 5-8. Within these groups of four, the pi-trie algorithm was set up with the following 
option choices.  
 

1. A plain vanilla pi-trie algorithm set to build the entire pi-trie.  
 

2. A pi-trie algorithm filtered for positive prime implicates only.  
 

3. A plain vanilla pi-trie algorithm to build the entire pi-trie, but recognize variable-disjoint 
subformulas.  
 

4. A pi-trie algorithm filtered for positive prime implicates only, and recognizing variable-
disjoint subformulas.  
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Problem ReOrd ReOrd # Orig # Actual # Orig # Actual Avg_Time Constructor 
 Vars Time Vars Vars Clauses Clauses In Msecs Options 

BlackBoard_1.sat yes 37 118 54 243 112 timeout none 
BlackBoard_1.sat yes 37 118 54 243 112 4788.0 (pos only) 
BlackBoard_1.sat yes 37 118 54 243 112 timeout (decomp.) 
BlackBoard_1.sat yes 37 118 54 243 112 854.0 (pos only)(decomp.) 
BlackBoard_1.sat no 0 118 54 243 112 timeout none 
BlackBoard_1.sat no 0 118 54 243 112 2633.0 (pos only) 
BlackBoard_1.sat no 0 118 54 243 112 timeout (decomp.) 
BlackBoard_1.sat no 0 118 54 243 112 1188.0 (pos only)(decomp.) 

FWS_1.sat yes 3 48 17 97 31 66.0 none 
FWS_1.sat yes 3 48 17 97 31 17.0 (pos only) 
FWS_1.sat yes 3 48 17 97 31 57.0 (decomp.) 
FWS_1.sat yes 3 48 17 97 31 11.0 (pos only)(decomp.) 
FWS_1.sat no 0 48 17 97 31 71.0 none 
FWS_1.sat no 0 48 17 97 31 18.0 (pos only) 
FWS_1.sat no 0 48 17 97 31 153.0 (decomp.) 
FWS_1.sat no 0 48 17 97 31 35.0 (pos only)(decomp.) 
GCD_1.sat yes 5 55 20 125 47 37.0 none 
GCD_1.sat yes 5 55 20 125 47 10.0 (pos only) 
GCD_1.sat yes 5 55 20 125 47 28.0 (decomp.) 
GCD_1.sat yes 5 55 20 125 47 7.0 (pos only)(decomp.) 
GCD_1.sat no 0 55 20 125 47 46.0 none 
GCD_1.sat no 0 55 20 125 47 23.0 (pos only) 
GCD_1.sat no 0 55 20 125 47 56.0 (decomp.) 
GCD_1.sat no 0 55 20 125 47 24.0 (pos only)(decomp.) 

pEHBH_1.sat yes 3 48 14 110 30 34.0 none 
pEHBH_1.sat yes 3 48 14 110 30 12.0 (pos only) 
pEHBH_1.sat yes 3 48 14 110 30 23.0 (decomp.) 
pEHBH_1.sat yes 3 48 14 110 30 5.0 (pos only)(decomp.) 
pEHBH_1.sat no 0 48 14 110 30 23.0 none 
pEHBH_1.sat no 0 48 14 110 30 5.0 (pos only) 
pEHBH_1.sat no 0 48 14 110 30 20.0 (decomp.) 
pEHBH_1.sat no 0 48 14 110 30 5.0 (pos only)(decomp.) 

prod_con_prim_1.s yes 8 76 39 163 81 12715.0 none 
prod_con_prim_1.s yes 8 76 39 163 81 1440.0 (pos only) 
prod_con_prim_1.s yes 8 76 39 163 81 10386.0 (decomp.) 
prod_con_prim_1.s yes 8 76 39 163 81 95.0 (pos only)(decomp.) 
prod_con_prim_1.s no 0 76 39 163 81 7059.0 none 
prod_con_prim_1.s no 0 76 39 163 81 1006.0 (pos only) 
prod_con_prim_1.s no 0 76 39 163 81 6982.0 (decomp.) 
prod_con_prim_1.s no 0 76 39 163 81 633.0 (pos only)(decomp.) 
resetcounter_1.sat yes 2 26 13 51 24 13.0 none 
resetcounter_1.sat yes 2 26 13 51 24 3.0 (pos only) 
resetcounter_1.sat yes 2 26 13 51 24 12.0 (decomp.) 
resetcounter_1.sat yes 2 26 13 51 24 2.0 (pos only)(decomp.) 
resetcounter_1.sat no 0 26 13 51 24 14.0 none 
resetcounter_1.sat no 0 26 13 51 24 3.0 (pos only) 
resetcounter_1.sat no 0 26 13 51 24 19.0 (decomp.) 
resetcounter_1.sat no 0 26 13 51 24 6.0 (pos only)(decomp.) 

watchdog_1.sat yes 5 59 28 119 55 726.0 none 
watchdog_1.sat yes 5 59 28 119 55 181.0 (pos only) 
watchdog_1.sat yes 5 59 28 119 55 474.0 (decomp.) 
watchdog_1.sat yes 5 59 28 119 55 51.0 (pos only)(decomp.) 
watchdog_1.sat no 0 59 28 119 55 808.0 none 
watchdog_1.sat no 0 59 28 119 55 147.0 (pos only) 
watchdog_1.sat no 0 59 28 119 55 701.0 (decomp.) 
watchdog_1.sat no 0 59 28 119 55 58.0 (pos only)(decomp.) 

Figure 17: Results of 5 technique combinations for solving the Blackboard problem 
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Figure 18: The Blackboard Problem 

 
The Blackboard problem is the largest and most difficult of the example problems. Figure 18 
shows more recent runs on the Blackboard problem without timeout limits and using a 
progression of five technique combinations. Figure 17 shows the “timeout” on all four options 
not filtering for positive prime implicates. 
 
The first technique, discovery of equivalent variables, is applied in all cases of Figure 17. A 
preprocessor searches the given formula for simple variable equivalences and then collapses the 
equivalence classes into singletons. 
 
The next technique applied is filtering. This alone increases efficiency by more than an order of 
magnitude. This is followed by ordering. By itself, ordering does not help at all, but a significant 
speedup results from the synergistic combination of ordering and decomposition. 
 
In summary, on the Blackboard problem, the raw pi-trie algorithm requires about 1.6 minutes 
with discovery of equivalent variables. But with filtering, reordering, and decomposition, the 
positive prime implicates are obtained in about 0.3 seconds. 

4.5.2.4  Dynamic Programming 
The main routine of the pi-trie algorithm searches recursively through the space of assignments 
by incrementally substituting truth constants for variables in the formula. This may result in 
independent subproblems (as discussed in the previous section). But in addition, identical 
subproblems may arise along different paths in the recursion. For example, let F = {{a, b, c, ¬d}, 
{c, ¬d, e, f}}. Then each of the following substitutions for c, d, e and f yield the formula {{a, 
b}}: 

 
c D e f 
0 1 0 1 
0 1 1 0 
0 1 1 1 
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When c=0 and d=1, the resulting clauses {{a, b}, {e, f}} are variable-disjoint, and thus any 
assignment satisfying the clause {e, f} simply removes it from the formula without affecting the 
rest. Repeated subproblems produced by such variable-disjointness are recognizable and 
strategies can be developed via dynamic programming to prevent repeated work. A version of the 
pi-trie system that employs this capability has been developed. While there is considerable 
overhead, significant speedups are likely to occur when the problems get quite large and have 
small treewidth. However, large MRICDF systems appear to induce (large) Boolean theories with 
small treewidth and may therefore be more amenable to this technique. 

4.5.2.5  Graph-Based Analysis of MRICDF Theories 
The actors of an MRICDF system yield clauses of the corresponding Boolean theory as follows: 
 
The epochs of a function or of a buffer are identical; each pair a, b yields the clauses – {𝑎, 𝑏}, 
{𝑏,𝑎}. The union of the epochs of a priority merge yield the following clauses – {𝑖1, 𝑖2, 𝑜}, 
{𝑖1, 𝑜}, {𝑖2, 𝑜}. The epochs of a sampler lead to union and intersection clauses – {𝑐, [𝑐], [¬𝑐]}, 
{𝑖, [𝑐], 𝑜}, {[𝑐], [¬𝑐]}, {[𝑐], 𝑐}, {[¬𝑐], 𝑐}. 
 
Variables that are equivalent, representing signals with the same epoch, can be treated as 
identical, substantially reducing the size of the formula. 
 
Typically two-clauses contain one positive and one negative literal and arise from epoch subsets. 
The subset relation partially orders I, the system epoch, i.e., the set of all instants. This partial 
order enables representation of I as a dag (directed acyclic graph) D. The union of the maximal 
elements of D is all of I, and thus the set M of maximal elements represent a positive implicate, 
though not necessarily a prime implicate. However, any minimal subset of M whose union is the 
system epoch is a prime implicate. These prime implicates are especially useful for this project. 
 
There are well known fast (i.e., polynomial) algorithms that find the set of maximal elements of a 
dag. A fast algorithm that removes unnecessary maximal elements, tentatively called the union 
algorithm, has been developed, and a prototype system that implements the union algorithm is 
under development. The prototype was able to find a prime implicate subset of M for each of the 
seven examples in Figure 17. 
 
However, the union algorithm does not always produce a prime implicate subset of the set of 
maximal elements. Counterexamples have been discovered, but all seem to be rather unusual 
cases such as MRICDF systems. 
 
Even though the output is not guaranteed to be a prime implicate, it is expected to be useful, both 
in its own right and as a filter for the pi-trie system. Focusing on this specialized version of the 
prime implicate problem may enable analysis of systems far too large to be handled by even the 
most advanced prime implicate algorithms. 
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4.6 Case Study 
Purpose: Currently, the extraction tool, CTS, is not ready to automatically generate code for full-
scale systems. In order to provide some preliminary results this research has manually converted 
two large-scale control systems from C to SIGNAL. The objectives of this study are two-fold. 
First, by converting the systems to SIGNAL, it is possible to illustrate the capabilities of 
SIGNAL to detect behavioral conflicts that would otherwise go undetected by a C compiler. 
Second, the converted systems will be able to serve as a baseline for future automatic translation 
attempts to be compared against. 

4.6.1 Case Study Examples 

4.6.1.1 ArduPilot System Description 
Ardupilot is an open source hardware and software platform that was developed as a part of the 
Arduino open-source electronics prototyping platform. The Ardupilot system consists of the 
hardware which is placed on an Unmanned Aerial Vehicle (UAV) and a radio controller that is 
held by the user to control the UAV. The basic components of the hardware inside the UAV are 
the following:  

• RC receiver  

• Global Positioning System (GPS) receiver  

• Servo Motors - for controlling the direction of the UAV  

• Various sensors including position and pressure  

• Ardupilot Board - board containing the controller of the UAV  
 

The radio controller in the hand of the user is used to communicate the roll, pitch and the throttle 
information to the UAV. The firmware for the system is written in the Arduino language, which 
is an extension of Embedded C. 
 
The following is a description of the modes in which the Ardupilot works.  

• Mode1: Manual Flight – The UAV is controlled completely using the radio controller. 

• Mode2: Stabilize – The radio controller is used to control the UAV. However, if the user 
does not use the radio controller, the UAV will automatically stabilize.  

• Mode3: Fly-by-wire-A – The UAV will automatically go to the programmed point 
controlling the altitude and speed.  

• Mode4: Fly-by-wire-B – The UAV will automatically go to the programmed point 
controlling the altitude. The airspeed is controlled manually in this mode.  

• RTL: Return to launch mode in which UAV will return to the programmed launch point 
and will circle until manual control is established. The UAV can be nudged in this mode.  
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• Loiter: The aircraft will circle around the current position. The UAV can be nudged in this 
mode.  

4.6.1.2 Ardupilot Software 
The Ardupilot case study analyses the software running on the microcontroller of the Ardupilot 
system. It tries to explain the cases where there could be problems if the system were 
implemented in C and whether these issues would be detected earlier if SIGNAL were to be used 
to develop the software of this embedded system. There are various modules implemented in the 
Ardupilot software. A brief description of the modules is provided in Figure 19. 
 

Module Description 
Name of Module Major Functions of the Module 
Waypoint Responsible for reading different waypoints 

from EEPROM and updating waypoint 
information 

Timing Contains timer functions 
System Configures the pin modes , reading and 

writing values from EEPROM, setting the 
mode of the Ardupilot by changing mux 
setting and failsafe operation 

Servo Setting servo muxes to switch between auto 
and manual mode, adjusting servo positions 

Sensors Reads values from analog inputs to 
determine the value of roll, pitch and speed 

Radio Initializes the radio and reads radio value 
Print Prints various variables out through the 

serial port 
Navigation Calculates the roll and pitch of the ardupilot 

that have to be set to navigate to the set 
destination waypoint 

GPS GPS related functions 
Events Switches mode based on various events that 

happen in the system 
Control Navigation Navigation helper functions 
Control Attitude Sets the integrator values to maintain the 

desired pitch and roll calculated by control 
navigation module 

Attitude Sets the position of the servo based on the 
calculated pitch and roll 

Ardupilot The main module 
 

Figure 19: Ardupilot software – module descriptions 
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The main module of the Ardupilot software, apart from variable initialization and initial 
configuration set-up, consists of an infinite loop (while(true){…}) that is responsible for running 
the Ardupilot. This infinite loop can be compared to a process in SIGNAL. Figure 20 provides 
the list of major function calls in this main while loop and a description of the function.  
 
 

Functions in the Main Loop 
Function Name Description 
read_control_switch Read 3-position switch on radio 
read_radio Filters radio input 
throttle_failsafe Checks for throttle failsafe 

condition 
read_XY_analogs Read IR sensors values 
decode_gps Read in the GPS position 
reset_location Reset waypoint to the starting point 
read_analogs Read analog inputs 
stabilize Function that helps in stabilizing 

the UAV 
navigate Navigation control loop that helps 

in navigating from one waypoint to 
another 

update_throttle Updates the throttle value 
 

 Figure 20: Ardupilot software – functions in main loop 

4.6.1.3 Case study examples on Ardupilot 
Why was Ardupilot chosen for the Case Study? 
Ardupilot is a real-time embedded system where safety of the system is critical. Even a small 
deviation from an expected behavior can result in a large amount of deviation in the UAV’s 
expected path and can even lead to loss of the UAV. The software on the Ardupilot consists of 
various modules that are integrated together. This provides an opportunity to check if there can 
be errors in the software because the behavior of the module is not captured.  
 
Ardupilot: Case1 -   

 
Figure 21: Case 1 Block Diagram 

 
Figure 21 represents a sub-process (P2) being called by a main process (P1). This case shows that 
even if the sub-process functionality is implemented correctly, it produces non-deterministic 
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output when integrated into the main process. This is because the main process expects the clock 
of x and z to remain the same, i.e. for every input x there has to be an output z generated. The 
sub-process however takes an input only after it produces the output and this behavioral property 
of the sub-process makes it incompatible for integration with the main process.   
 

 
Figure 22: Case 1 – Ardupilot Block Diagram 

 
In the case of Ardupilot, the main loop consists of read_radio function that reads a channel value 
from the radio that corresponds to the throttle, and the throttle_failsafe function that checks if the 
value read is within acceptable limits, as shown in Figure 22. The SIGNAL program, as shown in 
Listing 9, shows a throttle function where the output clock does not match the input clock. This 
occurs because the throttle function takes four iterations to compute the output. This means that if 
this behavior is not taken into consideration while designing the system, it will result in an 
undesired output. 

   
Listing 9: SIGNAL program of throttle function 
process case1 =( ? dreal radio_ch3;! boolean throttle_failure;) 
(| radio_ch3 ^= throttle_failure 
%radio input processing % 
| radio_out := 0.9 * radio_ch3 
 
% throttle failsafe function % 
| throttle_failure := (throttle (radio_out) > 100.0) 
|) 
where 
dreal radio_out; 
 

process  throttle = 
( ? dreal in1; 
! dreal out1; 
) 
(| cnt := 4 when (cntz = 0) default (cntz - 1) 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
62 

| cntz := cnt $ init 0 
| inbuf := in1 when (cnt = 4) default inbufz 
| inbufz := inbuf $init 0 
| calc := (inbuf + calcz) when (cnt >  0) default 0.0 
| calcz := calc $ init 0 
| out1 := calcz when (cnt = 0) 
| in1 ^= when (cntz = 0) 
| calc ^= inbuf ^= cnt 
|) 
where 
integer cnt, cntz; 
dreal inbuf, inbufz, calc, calcz; 
end; 

 
end 
 

The SIGNAL code of Listing 9 models this scenario. The clock calculus of SIGNAL is able 
to identify the problem and indicates that there is a clock constraint. The clock constraint 
implies that this system is behaviorally incompatible. Thus, the block ‘throttle’ has to be 
redefined to be behaviorally compatible with the system. However, the same system 
implemented in C will result in non-deterministic output.  
 

Ardupilot: Case2 -   

 
Figure 23: Case 2 Block Diagram 

 
In the Figure 23 there are two processes. Process 1 takes an input and generates the sum from 1 to 
the value of the input. Process 2 takes an input and multiples the value by 4. Both of these 
processes could represent two separate components developed independently. They will function 
correctly when they are tested. However, integration of both of the processes shown in Listing 10 
will result in an error.  

  
Listing 10: 
process update_throttle  = ( ? integer ch3; ! integer throttle) 
(| throttle := sum (ch3) + multiply (ch3)  
|) 
Where 
 

process sum = ( ?  integer in1; ! integer out1; ) 
(| j ^= cnt 
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 | in1 ^= when (cntz = 0) 
 | cntz := cnt $ init 0 
 | cnt := in1 when ( cntz = 0) default (cntz-1) 
 | jz := j $ init 0 
 | j := (jz + cnt) when (cnt > 0) default 0 
 | out1 := jz when (cnt = 0) 
 |) 
where 
integer cnt, cntz, j, jz;  
end; 

 
process  multiply =  
( ? integer in1; 
  ! integer out1;  
) 
(| cnt := 4 when (cntz = 0) default (cntz - 1) 
 | cntz := cnt $ init 0 
 | inbuf := in1 when (cnt = 4) default inbufz 
 | inbufz := inbuf $init 0 
 | calc := (inbuf + calcz) when (cnt >  0) default 0 
 | calcz := calc $ init 0 
 | out1 := calcz when (cnt = 0) 
 | in1 ^= when (cntz = 0) 
 | calc ^= inbuf ^= cnt 
|) 
where 
integer cnt, cntz; 
integer inbuf, inbufz, calc, calcz; 
end; 

 
end 
 

The SIGNAL code in Listing 10 was able to identify that the two components are incompatible 
because it was able to extract the root clock for the ‘update_throttle’ process. The addition 
operator requires both the operands to have the same clock. However, the two processes have 
different clocks and hence the system cannot have a root clock generated.  

4.6.2 EmCodeSyn as a Code Generation Tool for an UAV  

4.6.2.1 Introduction 
Ardupilot is an open source hardware and software platform. The hardware board used consists 
of an ATmega2560, a 16-bit micro-controller. The board is fully programmable and with the help 
of a GPS module and Inertial Measurement Unit (IMU) sensors it can be used to develop an 
Unmanned Aerial Vehicle. Software for the Ardupilot can be programmed using the Arduino 
Programming language. The language is similar to C and includes constructs that can be used in 
the programming of the micro-controller. The software can be written to make the UAV work in 
various modes that can include Autopilot, Manual, and Circling. The code generation tool is 
aimed at generating code for various functions of the UAV using EmCodeSyn. EmCodeSyn is a 
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framework of code synthesis from a multi-rate data flow based specification. It is a synchronous 
programming tool based on the Multi-rate Instantaneous Channel Connected Data Flow 
formalism.  

4.6.2.2 Hardware Components 
The hardware components of the UAV are the following:  

1. The Ardupilot Mega Micro-controller Board  

2. The IMU Sensor Board  

3. The Radio Control Transmitter and Receiver  

4. The GPS Module 

4.6.2.2.1 ArdupilotMega (APM) Micro-controller Board 
The micro-controller board is the component that contains the ATmega2560 micro-controller. 
The software written is programmed into the Atmega2560. The micro-controller runs at 16 MHz 
and has 12 timers, 256KB Flash, 4KB EEPROM and 8 KB RAM. It also has 16 10-bit ADC 
channels, four 8-bit PWM channels and four programmable serial Universal Synchronous-
Asynchronous Receiver/Transmitter’s (USART). The picture of the board is shown in Figure 24. 
This board also has eight input and eight output ports that can be used to receive and transmit 
Pulse Width Modulated (PWM) signals. The Global Positioning System (GPS) port on the board 
can be used to interface with the GPS module.  

 
Figure 24: ArdupilotMega Micro-controller Board 

4.6.2.2.2 IMU Sensor Board  
This sensor board has various sensors that are used to measure different parameters of the UAV. 
The data of the sensors in this board is used to access the speed and orientation of the UAV and 
hence can be used to fly the UAV in autopilot mode. The main sensors on the board are a 3-axis 
accelerometer and a 3-axis gyroscope that output data with the help of a 12-bit analog-to-digital 
converter (ADC). The accelerometer measures the inertial forces that are exerted on the UAV. 
The gyroscope measures the rotation of the object attached to it in the X, Y, and Z co-ordinates. 
Both the data from the accelerometer and gyroscope are used in estimating the orientation of 
UAV in space. The board also has pressure sensors that measure the altitude of the UAV. 
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A mini Universal Serial Bus (USB) port on the board can be used to interface the board with a 
computer. This port is used in programming the APM board and is also used in sending data to a 
computer during testing and for log collection. This board has ports that are used for connecting 
it with the APM micro-controller board. The sensor data during flight is sent via these ports to the 
micro-controller. The picture of the sensor board can be found in Figure 25.  

  

 
Figure 25: IMU Sensor Board 

4.6.2.2.3 Radio Control Transmitter and Receiver 
The Radio Control (RC) Transmitter and Receiver enable communication with the ground station 
and the UAV. A nine Channel Turnigy transmitter and receiver are used. The transmitter has two 
control sticks with each stick capable of moving in two directions. These four directions can be 
programmed to transmit data about the throttle, yaw, pitch, and roll that the user wants the UAV 
to have from the ground station. Each of the four parameters sends PWM signals in separate 
channels. Figure 26 shows the transmitter and the four parameters that can be communicated 
using the control sticks.  

 
Figure 26: RC Transmitter Schematic 

 
Two switches on the transmitter are used to communicate the flight mode information. One of the 
switches is a 3-way switch and the other one a 2-way switch. Hence, up to six modes can be 
programmed for the UAV flight. The pulse widths emitted by each of the switch positions has to 
be programmed in the transmitter. One of the channels of the transmitter is chosen (Channel 5) 
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and each position of the switch is programmed to output a specific PWM. The six PWM’s 
programmed are 1165, 1295, 1425, 1555 and 1815. Figure 27 shows the picture of the 
transmitter.  

 
Figure 27: RC Transmitter 

 
The RC receiver has to be coupled with the transmitter first. It is placed inside the UAV along 
with the APM board. The receiver has nine channels that are directly coupled with the 
transmitter. Each of these channels will give a PWM signal as its output. These channels are 
connected with the input channels on the APM board. The RC receiver is powered by a 5 V 
battery. The APM board receives its power from the RC receiver, shown in Figure 28.  
 

 
Figure 28: RC Receiver 

 

4.6.2.3 Work Progress 
All of the hardware required for the UAV has been set-up and the functioning of the APM board 
has been verified using Hardware-in-the-loop simulation. The software structure of the Ardupilot 
has been covered in the previous section. Work on Code generation is ongoing. The aim of the 
Code generation tool is to write all the important functions of Ardupilot in EmCodeSyn and to be 
able to implement various modes on the UAV. 
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4.6.3 AutoSAR 

4.6.3.1 System Description 
AUTOSAR, the automotive open system architecture, is a layered software architecture 
developed jointly within the automotive industry to create an open standardized interface for 
automotive hardware. The architecture is designed to interface with electronic control units, 
ECUs, that employ real-time operating systems and interact strongly with hardware. Specifically, 
it interacts with systems built around 16 or 32-bit microprocessors that can communicate on the 
controller area network (CAN), local interconnect network (LIN), or FlexRay protocols. 
Additionally, it is designed to be extensible so drivers can be added for future devices. 
 
As previously mentioned, AUTOSAR is a layered system. The lowest layer is the microcontroller 
abstraction layer, which contains internal drivers for accessing internal peripherals and memory 
mapped devices of the microcontroller. Above this is the engine control unit (ECU) abstraction 
layer, which interfaces with the underlying layer while also providing drivers for external 
peripherals connected to the microcontroller. The top layer is the services layer. This layer 
provides operating system functionality, network and memory services, and manages the ECU 
state.  

4.6.3.2 Arctic Core Software 
Arctic Core is an open-source implementation of the AUTOSAR standard. For the purpose of 
this example, the microcontroller layer is focused on, since it is the most fundamental layer and 
runs closely atop the hardware. A brief description of the core modules of this layer is provided 
in the table below. 

 
AutoSAR Microcontroller Modules 

Name of Module Major Functions of the Module 
CPU This module is responsible for providing communication protocols to 

read and set the myriad on-chip peripherals 
MCU Initializes or De-initializes the microcontroller 
OS Contains the methods for the running operating system to interact with 

the controller 
EVENT Provides system with external event handling capabilities 
COUNTER Tracks internal time for synchronizations and alarms 
MEMORY Interfaces with on-chip memory 
TASK Provides methods for manipulating and interacting with running tasks 
PCB Implements the Process Control Block 
SWAP Allows for OS context swapping 
ARCH Responsible for maintaining and tracking the system stack 
ALARM Implements timed alarms for the system 
COM-INTERNAL Implementation of internal communication protocols 

 Figure 29: AutoSAR Microcontroller Modules 
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All the source C files for a PowerPC microcontroller kernel and supplemental driver libraries 
from the Arctic Core project were manually translated to the SIGNAL language. First, the 
required new type definitions from these modules were identified and consolidated in a SIGNAL 
module (modules in SIGNAL are roughly equivalent to a C library). Then, each module was 
translated into a corresponding SIGNAL module while preserving their original behavior. Lower 
level functions were sometimes problematic because SIGNAL does not have a notion of pointers. 
To overcome this obstacle, some functions utilize SIGNAL’s ability to embed C source code. 
The depth of timing analysis that can be performed on such functions is limited because the 
embedded C code is treated as a black box by the SIGNAL compiler. However, the timing of the 
process call and the interface variables for these functions still contribute to the overall system 
model. Finally, the individual modules were composed into a single top-level module, 
representing the entire system. 

4.6.3.3 Arctic Core Example 
Using this translated system module an example execution was reconstructed from the original 
project.   

process test_driver = ( ? event start; ) 
(| btask_3() 
 | etask_1() 
 | etask_2() 
 |) 
where 
 use MICRO_LIB; 
end; 

 
This example provides a fairly simple, straightforward test. It takes the system, and spins-off 
three parallel tasks that run indefinitely. This is not expected to cause or encounter problems on 
the original system, and indeed SIGNAL detected no conflicts. 

4.6.3.4 Error Detection 
In the original project, the three tasks ran independently of one another, so no direct conflict is 
truly possible. In this next example, however, an interaction between btask3 and etask1 has been 
added to the system. This system tries to have btask3 accept as input a task’s type, tes2, and 
update that type, putting the result in tes1. Likewise, etask1 attempts to take tes1, to update it, and 
place the result in tes2.   
 

process test_driver = (?event start;!boolean fin;) 
(| tes1 := btask_3(tes2) 
 | tes2 := etask_1(tes1) 
 | etask_2() 
 | fin := (tes1 > tes2) 
 |) 
where 
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 use MICRO_LIB; 
 TaskType tes1, tes2; 
end; 
 

Unfortunately, this arrangement cannot function. Before either task can begin, it depends on the 
other to first provide their output, so the system would deadlock at runtime. SIGNAL detects this 
cyclic dependency, and outputs the following detected cycle: 

  

 
 

Figure 30: Overview of a Cyclic Dependency 
  

| {tes1 --> tes2} when C_fin 
| {tes2 --> tes1} when C_fin 

 
This notation says that tes1 must precede tes2 while tes2 must precede tes1. Without buffers to 
store initial and generated values this is a clear conflict, and if the system were run, it would lead 
to system deadlock.  

4.6.4 Results of the Study 
These case studies have converted two actual C-based software platforms to SIGNAL, 
illustrating how SIGNAL can be used to build and represent practically sized systems. 
Additionally, the case studies were able to create scenarios for these SIGNAL implementations 
that either simulate flawed compositions or represent processes that cannot be safely composed. 
The case studies have shown that SIGNAL is able to detect such conflicts at compile time, 
reducing the probability of such an error going untested and causing a crash at run-time. 
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5 Some Paths Unexplored – Some Blind Alleys 
There are some paths that were proposed to be explored, but time ran out before they could be 
completed.  There were also some paths explored where progress was limited, so backtracking 
occurred.  This section summarizes these areas. 

5.1 Affine Clock Relation based Interface Types 
If the component behavior has fixed periodicity with respect to another component, e.g. one 
process produces an output x, ten times for each time the other process is ready to consume that 
input, these two components are not going to compose without having an overflow of data on the 
channel connecting the two components.  One possibility to overcome the data overflow is to 
design a buffer of size 10, and when the buffer gets full, the process is stopped until the other 
process catches up.  This kind of buffer and synchronization logic synthesis can be automated if 
the interface types capture this numeric ratio. Standard polychronous models can express this 
behavior but that would require replicating the consumer process ten times, and then defining a 
synchronization point between the two models, which would be inefficient.  If the buffer has to 
be synthesized, the ratio of the rate of input and rate of output must be expressed in the clock 
relations.  Such clock relations are called affine relations. 
 
It was planned to explore the notion of affine clock relations, and the use of such relations to 
check for interface compatibility, as well as to find ways to synthesize efficient buffering and 
synchronization logic to make them compatible.  While it is believed this direction will have 
potential impact to efficient modeling, not enough progress was made in this area and it will be 
completed in a different project. 

5.2 Autosar Platform Modeling Issues 
For case study purposes, it was planned to extract the behavioral interfaces for an open source 
AUTOSAR platform model written in C++ and inject problems at the interfaces of components, 
and verify that the methodology could catch the injected problems.  The reason for doing this was 
as follows: the tool to automatically extract the polychronous model from C programs was not 
ready for use early on, although that prototype tool is now available.  So in order to demonstrate 
the methodology, the components were manually converted to the polychronous modeling 
language SIGNAL, and checked for compatibility problems.  This work was described in Section 
4 of this report. 
 
The AUTOSAR platform is a large, complex system.  The platform operates at a low-level, 
serving as an interface between applications and the underlying hardware.  As a result, there is an 
abundance of system calls and macros that do not directly translate to SIGNAL.  These calls were 
collected into a few supporting C library files.  AUTOSAR also has several different 
implementations, dependent on the hardware platform being targeted for deployment.  Due to 
limitations with the SIGNAL language, notably a lack of conditional definitions, the manual 
translation was completed for only one target platform: the PowerPC.  Currently, that is the state 
of the AUTOSAR case study, as a SIGNAL-modeled PowerPC interface with supporting C 
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libraries.  The ultimate goal of this case study is to use it as a comparison of efficacy between the 
manually translated code and the code generated by our static single assignment based automated 
translation tool.  The translation tool, however, is still under development and has not yet reached 
a point where it can translate a C program of AUTOSAR’s complexity.  A comparison can be 
made once the tool has been expanded to cover instances such as pointer-based memory access, 
C macros, and conditional definitions. 

5.3 Ardupilot Platform Modeling Issues 
For case study purposes, it was proposed to extract behavioral interfaces for Ardupilot platform 
models written in C++ and to inject problems at the interfaces of components, and then verify if 
the proposed methodology could catch those problems.  This was partially performed, as 
described in Section 4 of this report.  However, the entire Ardupilot platform was not fully 
modeled due to various issues. 

5.3.1 Interface Variable 
The Ardupilot software has a large number of static variables that are being internally modified 
across all of the functions.  However, for a SIGNAL process to work, these static variables have 
to be exposed at the interface.  This makes the problem of conversion very complicated since a 
process A that calls another process B inside it also needs to expose the static variables that are 
being used by process B.  This results in some processes having a large number of variables in 
the interface.  The use of modules was an approach that was tried to prevent this problem. 

5.3.2 Typecasting 
The Ardupilot software has various types that are not being supported by SIGNAL.  This requires 
typecasting of variables.  For example, types like uint16_t and int8_t which are used in the 
Ardupilot software to save space on the EEPROM are not supported in SIGNAL.  Additionally, 
pointers are not supported in SIGNAL. 

5.3.3 System Calls 
There are various systems calls like delay() that are not possible to generate using SIGNAL. 

5.3.4 Cyclic Function Calls 
There are cases of cyclic function calls in the Ardupilot software, where Function A calls 
Function B and Function B calls Function A.  These cases would work in C, but do not work in 
SIGNAL due to its Cyclic dependency. 

5.3.5 Final Implementation 
The above limitations make it very difficult to convert the entire Ardupilot code to SIGNAL.  
However, the main idea of the case study was to illustrate the issues like bugs and errors that 
could arise out of the implementation of the embedded system in C.  The case study also tried to 
demonstrate how SIGNAL’s clock extraction mechanism would spot the errors.  Hence, various 
functions of Ardupilot software were converted and possible issues in the implementation in C 
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were explored.  The converted SIGNAL functions were able to identify the bugs that were not 
spotted during the C program analysis. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
73 

6 Conclusions & Recommendations 
The primary recommendation resulting from this research is that composition of pre-designed 
software components without behavioral types leads to many errors including software bugs, 
concurrency bugs, deadlock, etc.  It is difficult to subject the composed system to formal 
verification because most formal verification tools are not scalable to the degree required.  Thus 
it is more efficient to check the compatibility of components by composing their interface types, 
and checking if the composition does not violate certain properties, such as liveness. 
 
However, the question is: what is the best way to represent the behavior of a component’s 
interface.  The model needs to capture the behaviors of the signals/variables/events at the 
interface without having to completely reproduce the entire design of the component.  This 
requires a modeling domain where model composition is not computationally explosive. 
 
The polychronous modeling domain provides one possibility; experience from this project shows 
that polychrony is able to check for many properties of composition, especially liveness.  
However, there are other ways to express the behaviors at the interface, for example via an 
assume/guarantee property specification.  This path was not explored in this effort. While there is 
reason to believe that such interfaces will be more compact, checking composition is likely to be 
more expensive computationally.  However, this approach allows more properties of the 
composition to be guaranteed. 
 
In summary, it is believed that there is a great need for continued research on the problem of 
software component composition and guaranteed integration results.  This project was just the 
beginning of exploration of the space. 
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Appendix: Dissertations and technical reports 
supported by the project 
The following were partially or completely supported by this project: 
 
Bijoy A. Jose, Formal Model Driven Software Synthesis for Embedded Systems, PhD 
Dissertation, August 2011. 
 
Jens Brandt, Mike Gemuend, Klaus Schneider, Bijoy A. Jose and Sandeep K. Shukla, "Causality 
Analysis of Polychronous Programs, FERMAT Technical Report 2011-02, 2011. 
 
Julien Ouy, Jing Huang and Sandeep Shukla, "Behavioral Compatibility Checking of 
Polychronous Components", FERMAT Technical Report 2011-03, 2011. 
 
Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False 
Causal loop Detection during Code Synthesis from Polychronous Specifications", FERMAT 
Technical Report 2011-04, 2011. 
 
Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla and Jean-Pierre Talpin, 
"Integrating System Descriptions by Clocked Guarded Actions", FERMAT Technical Report 
2011-06, 2011. 
 
Bijoy A. Jose, Sandeep K. Shukla, "New Techniques for Sequential Software Synthesis from a 
Polychronous Data Flow Formalism", FERMAT Technical Report 2011-07, 2011. 
 
Bijoy A. Jose, Abdoulaye Gamatie, Matthew Kracht and Sandeep K. Shukla, "Improved False 
Causal Loop Detection in Polychronous Specification of Embedded Software", FERMAT 
Technical Report 2011-08, 2011. 
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List of Symbols, Abbreviations and Acronyms 
 

3-CNF – 3-conjunctive normal form 

ADC – analog-to-digital converter 

AFRL – Air Force Research Laboratory 

APM – Ardupilot Mega 

AUTOSAR – Automotive Open System Architecture 

CAN – Controller area network 

CFG – Control Flow Graph 

CTS – C to SIGNAL 

dag – directed acyclic graph 

ECU – engine control unit 

EmCodeSyn – Embedded Code Synthesis 

GCC – GNU Compiler Collection 

GNU – GNU’s Not Unix 

GPS – Global Positioning System 

iff – if and only if 

IMU – Inertial Measurement Unit 

INRIA – Institut National de Recherche en Informatique et Automatique 

LIN – local interconnect network 

MRICDF – Multi-Rate Instantaneous Channel Connected Data Flow Actor Model 

NP-Hard – Non-deterministic polynomial time hard 

OASD(R&E) – Office of the Assistant Secretary of Defense for Research and Development 

OSD – Office of the Secretary of Defense 
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PI – Prime Implicate 

PWM – Pulse Width Modulated 

RC – radio control 

SAT - Satisfiability 

SMT – SAT Modulo Theory 

SSA – Static Single Assignment 

UAV – Unmanned Aerial Vehicle 

USART – Universal Synchronous-Asynchronous Receiver/Transmitter 

USB – Universal Serial Bus 

V&V – Verification and Validation 
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